
Min/Max-Poly Weighting Schemes and the NL vs UL Problem∗

Anant Dhayal† Jayalal Sarma† Saurabh Sawlani†

May 3, 2016

Abstract

For a graph G(V,E) (|V | = n) and a vertex s ∈ V , a weighting scheme (w : E → N) is called
a min-unique (resp. max-unique) weighting scheme, if for any vertex v of the graph G, there is a
unique path of minimum (resp. maximum) weight1 from s to v. Instead, if the number of paths
of minimum (resp. maximum) weight is bounded by nc for some constant c, then the weighting
scheme is called a min-poly (resp. max-poly) weighting scheme.

In this paper, we propose an unambiguous non-deterministic log-space (UL) algorithm for
the problem of testing reachability graphs augmented with a min-poly weighting scheme. This
improves the result due to Allender and Reinhardt[12] where a UL algorithm was given for the
case when the weighting scheme is min-unique.

Our main technique involves triple inductive counting, and generalizes the techniques of
[8, 13] and [12], combined with a hashing technique due to [6] (also used in [7]). We combine
this with a complementary unambiguous verification method, to give the desired UL algorithm.

At the other end of the spectrum, we propose a UL algorithm for testing reachability in
layered DAGs augmented with max-poly weighting schemes. To achieve this, we first reduce
reachability in layered DAGs to the longest path problem for DAGs with a unique source, such
that the reduction also preserves the max-unique and max-poly properties of the graph. Using
our techniques, we generalize the double inductive counting method in [9] where UL algorithm
was given for the longest path problem on DAGs with a unique sink and augmented with a
max-unique weighting scheme.

An important consequence of our results is that, to show NL = UL, it suffices to design
log-space computable min-poly (or max-poly) weighing schemes for layered DAGs.

1 Introduction

Reachability testing in graphs (Reach) is an important algorithmic problem that encapsulates
central questions in space complexity. Given a graph G(V,E) and two special vertices s and t,
the problem asks to test if there is a path from s to t in the graph G. The problem admits a
(deterministic) log-space algorithm for the case of trees and undirected graphs (by a breakthrough
result due to Reingold[11]). The directed graph version of the problem captures the complexity
class NL. Designing a log-space algorithm for the problem is equivalent to proving NL = L. (See [1]
for a survey.) Even in the the case when the graph is a layered DAG2 ,the problem is known to be
be NL-complete.

∗The preliminary version of this work was presented at the conference FSTTCS 2014.
†Department of Computer Science and Engineering, Indian Institute of Technology Madras, Chennai, India.
1Weight of a path p is the sum of the weights of the edges appearing in p.
2A DAG is layered, if V can be partitioned as V = V1 ∪ . . . V` s.t. edges go from Vi to Vi+1 for some i.

1

An important intermediate class of algorithms for reachability is when the non-determinism is
unambiguous - when the algorithm ‘accepts’ in at most one of the non-deterministic paths. The
class of problems which can be solved by such restricted non-deterministic algorithms using only
log-space is called Unambiguous Log-space (UL). Under a non-uniform polynomial-sized advice,
the reachability problem is known to have a UL algorithm[12], thus showing NL/poly = UL/poly.
Central to arriving at this complexity theoretic result was the following algorithmic result that
Allender and Reinhardt[12] had established: testing reachability in a graph G augmented with
a log-space computable weighting scheme that maps w : E → N such that there is a unique
minimum-weight path from s to any vertex v in the graph, can be done by a non-deterministic
log-space algorithm unambiguously and hence is in the complexity class UL. (We call such weighting
schemes as min-unique weighting schemes.) This also led to other important developments including
an unambiguous log-space algorithm for directed planar reachability [5] - which was achieved by
designing a log-space computable min-unique weighting scheme for reachability in grid-graphs
(a special class of planar graphs for which reachability is as hard as planar reachability[2]). An
important open problem in this direction is to design a log-space min-unique weighting scheme
for general graphs. The UL-computable version of this is also known to be equivalent to showing
NL = UL.

Our Results: We make further progress on this algorithmic front by relaxing the restriction on
the number of paths of minimum weight from one to polynomially many paths. We call a weighting
scheme min-poly if it results in at most polynomially many (in terms of n = |V |) paths of minimum
weight from s to any vertex v in a graph G(V,E).

Theorem 1. Testing reachability in graphs augmented with log-space computable min-poly weighting
schemes, can be done by a non-deterministic log-space algorithm unambiguously and hence is in the
complexity class UL.

Our algorithms use the technique of triple inductive counting. The method of inductive counting
was originally discovered and employed as an algorithmic technique in [8] and [13] in order to
design non-deterministic log-space algorithms for testing non-reachability in graphs. A double
inductive version of this was used again by Allender and Reinhardt[12] for designing unambiguous
non-deterministic algorithms for testing reachability graphs augmented with min-unique weighting
schemes. We use a triple inductive version of the inductive counting method, keeping track of
one extra parameter (which is the sum of the number of minimum weight paths to each vertex).
Along with a hashing technique (also used in [7]), this leads to a non-deterministic algorithm where
each accepting configuration has at most one path leading to it on any input (the corresponding
complexity class is known as FewUL). Finally, we convert this algorithm to a UL algorithm using an
unambiguous complimentary verification technique, thus completing the proof of the theorem.

A natural complementary question is if similar complexity bounds hold in the case of graphs
with weighting assignments that results in unique maximum weight paths from s to any vertex v
(such weighting schemes are called max-unique weighting schemes). In [9], the longest path problem
on DAGs augmented with max-unique weighting assignments and having a unique sink t, was shown
to be in UL. The corresponding weighting scheme with polynomially many paths of maximum
weight will be called a max-poly weighting scheme. Using our triple inductive and complementary
verification techniques, we adapt their algorithms to improve their results by relaxing the constraint

2

on the weighting assignments - from max-unique to max-poly. We present our theorem in terms of
the reachability problem, since we also show a reduction (Lemma 4.1) from the reachability problem
on layered DAGs to the longest path problem on single source DAGs, where the max-unique and
max-poly property of the graph is preserved.

Theorem 2. Testing reachability in layered DAGs augmented with log-space computable max-poly
weighting schemes, can be done by a non-deterministic log-space algorithm unambiguously and hence
is in the complexity class UL.

Observing that Theorem 1 and Theorem 2 hold even when the weighting schemes are UL-
computable, and combining with the results of [10], it follows that: for any graph G there is a
UL-computable min-poly weighting scheme if and only if there is a UL-computable min-unique
weighting scheme. By a minor variant the proof technique in [10], it can be concluded (Proposition
5.1 in Section 5) that showing NL = UL is equivalent to designing UL-computable (min)max-unique
weighting schemes which, thus, is equivalent to designing UL-computable (min)max-poly weighting
schemes.

An important comparison of our results is with a complexity theoretic collapse result shown
by [7]. FewL is the class of problems that has non-deterministic algorithms with only polynomially
(in n) many accepting paths on any input of length n. Clearly, FewL contains all problems in UL -
however, the converse is not known. In its algorithmic flavour, this question asks if reachability in
a graph with at most polynomially many paths from s to t, can be done by a non-deterministic
algorithm in log-space, producing at most one accepting path. ReachUL and ReachFewL are the
corresponding complexity classes where the uniqueness and polynomially boundedness constraints
are respectively applied for the number of paths from s to any other v ∈ V . Clearly, ReachUL is
contained in ReachFewL and were recently shown to be equal [7]. It is worthwhile noting that this
establishes an unambiguous log-space algorithm for reachability in graphs where there are only
polynomially many paths from the start vertex to any vertex in the graph. The graphs that we
discussed above (i.e. graphs augmented with min/max-poly weighting schemes) also include such
graphs trivially by keeping 1 as the weight assignment (by the weighting schemes) to all the edges.

2 Preliminaries

In this section, we provide the definitions and results referred to in the paper. Additionally, the
reader can refer [4] and [3] for any undefined or unexplained definitions, reductions or results.

A layered DAG is a directed acyclic graph (DAG) in which the vertices can be partitioned into
` ordered layers such that each edge moves from a vertex in layer j to one in layer j + 1, for all
0 ≤ j ≤ ` − 1. In such DAGs, we can label the vertices with unique positive integers in such a
way that the label for any vertex in layer j is less than that for a vertex in layer j + 1, for all
0 ≤ j ≤ `− 1. This way, if there is an edge from a vertex labelled u to a vertex labelled v, then
u < v.

In the context of this paper, we will use the Turing machine as our computational model. We
will define some of the relevant complexity classes with respect to the space and time used by a
Turing machine to solve a certain problem.

Log-space (L) and Non-deterministic log-space (NL) are complexity classes of problems which
can be solved by deterministic and non-deterministic Turing machines, respectively - where the
length of the work tape is logarithmic in terms of the input length.

3

A problem is said to be in the class Unambiguous log-space (UL), if it can be solved by a non-
deterministic log-space Turing machine such that, on any given input, at most one computational
path leads to an ‘accept’ state. A problem is said to be in the class FewL, if it can be solved by a
non-deterministic log-space Turing machine such that, on any input, at most polynomially many
computational paths lead to an ‘accept’ configuration.

Another related complexity class is called FewUL. A problem is said to be in the class FewUL, if
it can be solved by a non-deterministic log-space Turing machine such that, on any input and a
given ‘accept’ configuration C, at most one computational path leads to C.

A language L is said to be in the complement class of some complexity class C (called co-C) if
the language L ∈ C. It is known [8, 13] that NL = co-NL.
The following containment can be drawn from the definitions itself:

L ⊆ UL ⊆ FewUL ⊆ FewL ⊆ NL

We also formally define two problems which will appear in the paper:

Reach = {(G, s, t) | G contains a path from s to t}
LongPath = {(G, s, t, j) | G contains a simple path of length ≥ j from s to t}

Weighting Schemes: Given a graph G(V,E), a weighting scheme W : E 7→ Z+ is an assignment
of positive integers, called weights to the edges of a given graph G(V,E). The weight of an edge
e ∈ E is represented as W (e). The weight of a path is defined as the sum of the weights of edges in
the path. A weighting scheme on a graph G(V,E) is called a min-unique (max-unique) weighting
scheme if for every vertex v ∈ V , the number of minimum (maximum)-weight paths from s to v is
at most one.

Similarly, a weighting scheme on a graph G(V,E) is called a min-poly (max-poly) weighting
scheme if for every vertex v ∈ V , the number of minimum (maximum)-weight paths from s to v is
bounded by |V |c, where c is a given constant.

When a particular weighting scheme is given or is computed for a graph G, rather than storing
the weights as an appendix to the graph, we ‘apply ’ the weighting scheme to the graph in the
following way: an edge (u, v) of weight w is replaced by a u v path of length w.

If a min-unique (max-unique) weighting scheme is ‘applied’ to a graph, then the resultant graph
itself is known as a min-unique (max-unique) graph. Similarly, if a min-poly (max-poly) weighting
scheme is ‘applied’ to a graph, then the resultant graph is known as a min-poly (max-poly) graph.

3 Reachability in min-const and min-poly graphs

In this chapter, we give an unambiguous non-deterministic log-space (UL) algorithm for Reach on
min-poly graphs. In the process, we will first show a UL algorithm for Reach on min-const graphs3

in an attempt to highlight the primary idea behind the algorithms.

3.1 A Warmup Case : UL algorithm for Reach on min-const graphs

In this section, we introduce a modification of Allender and Reinhardt’s [12] algorithm for Reach
on min-unique graphs, which allows it to work for min-const graphs. We will borrow the following
terminology from their paper:

3Graphs in which the number of minimum-weight s t paths is bounded by a constant

4

Let v be a vertex of G. d(v) is the length of the shortest s v path in G. Additionally, we define
p(v) as the number of shortest s v paths in G. Note that, in the case of min-unique graphs, p(v)
was at most 1. Ck is a set of vertices which is defined as follows: Ck = {v | d(v) < k}. The following
variables are the ones computed inductively in the algorithm: ck = |Ck| and Σk =

∑
v∈Ck

d(v).
To handle a constant number of minimum-length paths, we introduce a new inductive parameter

pk which stores the sum of the number of minimum length paths from s to every vertex v ∈ Ck.
Thus, pk =

∑
v∈Ck

p(v).

Idea: First, we design an unambiguous log-space routine Check-min-const which returns
d(v) ≤ k (in at most one non-deterministic path), assuming that the correct values of ck, Σk and pk
are given.

Using Check-min-const as a subroutine, the routine Update-min-const computes inductively
the values of ck+1, Σk+1 and pk+1, given that the input graph is min-const (considering vertices
only in Ck), and the correct values of ck, Σk and pk are known. Here, we also check if there are
more than the set constant number of paths to any vertex in Ck+1 − Ck . If yes, then we reject.

We know that the input graph is min-const considering vertices in C0 and we also know the
correct values of c0, Σ0 and p0. So, in Main-min-const we will use the above routines to compute
cn−1, Σn−1 and pn−1 and verify that the graph is min-const. Once, this is done we will check
whether t is reachable from s or not. If reachable, we will accept.

In this algorithm, the parameter pk is also required because, now for each vertex v we have
p(v) minimum-length paths, and unlike in the case of min-unique graphs, now p(v) can be more
than one. So, while guessing the minimum-length path to any vertex v, we can have more than one
non-deterministic path in the algorithm which comes up with valid minimum-length s v paths in
G. So, now in our algorithm Check-min-const, every time we need to guess a minimum-length
path to some vertex v, we will guess p(v) and then guess p(v) many minimum-length s v paths.
Also, we will return the value p(v) if v ∈ Ck, and 0 if v /∈ Ck. Additionally, we will maintain an
order while guessing the p(v) paths, so that the guessing procedure remains unambiguous. Finally,
we will verify that for each vertex v, the guessed value of p(v) is indeed correct.

Guessing constant paths unambiguously in log-space: An ` length path π is said to be
‘lexicographically greater’ than another `-length path π′ if at the first vertex where both the paths
differ (starting from the start vertex s), π has a vertex with higher label than π′.

The following demonstrates how the algorithm guesses q s v paths of length ` unambiguously
in log-space.

• Set aside q log n+ log `+ q − 1 bits (all initialized to 0) from the empty part of the tape.

• The first q slices of log n bits each are meant to contain the current nodes of the q paths (all
initialized to logn zeros, indicating node s).

• The next log ` bits contain the counter of the current path length for all the q paths being
guessed.

• Of the last q − 1 bits, the ith bit indicates whether or not the ith path is lexicographically
greater than the i+ 1th path (according to the guessing done so far).

5

• Non-deterministically guess the next node for each of the q paths. Each time, replace the
current q nodes by the next q nodes, in the q slices. After every such guess increase the counter
contained in the log ` bits by 1. Reject if the nodes guessed do not signify valid paths.

• Update the last q − 1 bits every time you guess a next node for some path. Make the ith bit
1 at the very first time when the next node in the ith path is lexicographically greater than
that of the i+ 1th path. Once the ith bit is made 1, the next nodes guessed in ith and i+ 1th

paths need not follow any order. But, until the ith bit remains 0, same next nodes have to be
guessed for both the paths.

• If, at any time and for any i, the i+ 1th path is lexicographically greater than the ith path,
reject.

• Before all the `+ 1 nodes have been guessed for all the paths, all the q− 1 bits should become
1 (as we are guessing q distinct paths of length `). Also, the ` + 1th node for all the paths
should be v. In any other case, reject.

Algorithm The following is a UL algorithm to decide the language:

Min-Const Reachc = {(G(V,E), s, t) | ∃ s t path and ∀v ∈ V, p(v) ≤ c}

Algorithm 3.1 Main-min-const: Main UL routine for Min-Const Reachc
1: Input: (G, s, t)
2: k := 1
3: c0 := 1; Σ0 := 0; p0 := 1
4: (c1,Σ1, p1) = Update-min-const(G, s, 0, c0,Σ0, p0)
5: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
6: (ck+1,Σk+1, pk+1) = Update-min-const(G, s, k, ck,Σk, pk)
7: k := k + 1
8: end while
9: if Check-min-const(G, s, t, k, ck,Σk, pk) > 0 then

10: ACCEPT
11: else
12: REJECT
13: end if

6

Algorithm 3.2 Update-min-const: Deterministic (barring Check-min-const calls) routine for
computing ck+1, Σk+1 and pk+1

1: Input: (G, s, k, ck,Σk, pk)
2: Output: ck+1,Σk+1, pk+1

3: ck+1 := ck; Σk+1 := Σk; pk+1 := pk;
4: num := 0;
5: for v ∈ V do
6: if Check-min-const(G, s, v, k, ck,Σk, pk) = 0 then
7: for x such that (x, v) ∈ E do
8: num := num+ Check-min-const(G, s, x, k, ck,Σk, pk);
9: if num > c then

10: REJECT
11: end if
12: end for
13: if num > 0 then
14: ck+1 := ck+1 + 1; Σk+1 := Σk+1 + k + 1; pk+1 := pk+1 + num;
15: end if
16: end if
17: end for

Algorithm 3.3 Check-min-const: UL routine to compute the number of paths to v

1: Input: (G, s, v, k, ck,Σk, pk)
2: count := 0; sum := 0; paths := 0; paths.to.v := 0;
3: for x ∈ V do
4: Non-deterministically guess 0 ≤ q ≤ c
5: if q 6= 0 then
6: Non-deterministically guess 0 ≤ ` ≤ k
7: Non-deterministically guess q paths p1, p2, . . . pq of length exactly ` each from s to x.
8: if (the paths are not valid) then
9: REJECT

10: end if
11: count := count+ 1; sum := sum+ `; paths := paths+ q;
12: if x = v then
13: paths.to.v := q;
14: end if
15: end if
16: end for
17: if count = ck, sum = Σk and paths = pk then
18: Return the value of paths.to.v
19: else
20: REJECT
21: end if

Proof of Correctness:

7

Claim 3.1.1. If G is min-const considering only vertices in Ck, and correct values of ck,Σk and pk
are given, then the algorithm Check-min-const has exactly one non-rejecting path, and it returns
the correct value of p(v) if d(v) ≤ k and returns 0 if d(v) > k.

Proof. We argue that ∀x ∈ V , there is a unique way to guess the values of q and `, such that the
equalities count = ck, sum = Σk and paths = pk are satisfied. We analyze this by cases :

• If the algorithm, in a non-deterministic path, guesses q 6= 0 (i.e. d(x) ≤ k) for some vertex x
for which q = 0 (i.e. d(x) > k), then it will not be able to guess any path of length ≤ k, and
hence will end up rejecting in that non-deterministic path. If it guesses q = 0 (i.e. d(x) > k)
for some vertex x for which q 6= 0 (i.e. d(x) ≤ k), it will have to guess q 6= 0 (i.e. d(y) ≤ k) for
some vertex y for which q = 0 (i.e. d(y) > k), and hence will reject in that non-deterministic
path.

• Now, for the non-deterministic paths where q 6= 0, i.e. x ∈ Ck:

– If the algorithm, in a non-deterministic path, guesses ` < d(x) for any vertex x, then it
will not be able to find a path of such length and hence will end up rejecting in that
non-deterministic path. If it guesses ` > d(x), then to compensate, it will have to guess
` < d(y) for some other vertex y, and hence will reject in that non-deterministic path.

– If the algorithm, in a non-deterministic path, guesses q > p(x) for any vertex x, then
it will not be able to guess q many paths, and hence will end up rejecting in that
non-deterministic path. If it guesses q < p(x), then to compensate, it will have to guess
q > p(y) for some other vertex y, and hence will reject in that non-deterministic path.

Hence, only the path in which, for each vertex x, “q = 0?” (i.e. “d(x) ≤ k?”) is guessed correctly,
and the guessed value of q is equal to p(x) and ` is equal to d(x) (if q 6= 0), will be a non-rejecting
path and will return the correct value of p(v) if d(v) ≤ k and 0 if d(v) > k (as in this case the
if-condition at line 5 will not be satisfied).

Claim 3.1.2. If G is min-const considering only vertices in Ck and correct values of ck,Σk and pk
are given, the algorithm Update-min-const runs deterministically barring the calls to the routine
Check-min-const, and computes the correct values of ck+1,Σk+1 and pk+1. It also rejects if G is
not min-const considering only vertices in Ck+1.

Proof. The algorithm first assigns ck+1 := ck,Σk+1 := Σk and pk+1 = pk. Now, to update these
values we need the exact set of vertices with d(v) = k + 1, i.e. the vertices in Ck+1 − Ck. The
algorithm, for each v, checks if d(v) > k and for each of its neighbours x, calls Check-min-const.
If all the calls return 0, i.e. no neighbour is in Ck, we do not do anything and move on to the next
vertex. If the sum of the values returned by all the calls (which is being stored in the variable num
in line 8 is in the range 1 to c, pk+1 is incremented by this value, ck+1 is incremented by 1 and
Σk+1 is incremented by k + 1 (line 14). If at any point on line 8, the variable num exceeds c we
reject (line 10), as the input graph G is not min-const. Thus, all the three parameters get updated
correctly and hence the proof.

Observation 3.1. Observe that, since G is min-const considering vertices in C0 and we begin
with the correct values of c0,Σ0 and p0 (we assume that there is 1 zero length path from s to s),
by induction, Claims 3.1.1 and 3.1.2 imply that the values of ck,Σk and pk calculated after every

8

iteration of while-loop (lines 5 to 8) in the Main-Const algorithm are correct. Also, the iteration
ends without rejecting, if and only if the graph G is min-const considering only vertices in Ck.

Lemma 3.1. The algorithm Main-Const has at most one path to ACCEPT state. Additionally,
the algorithm has exactly one path to ACCEPT state if and only if G is a min-const graph and t is
reachable from s.

Proof. Using Observation 3.1 and Claim 3.1.1, we know that there is exactly one non-rejecting path
in each call to Check-min-const. Thus, there is exactly one non-rejecting path in each call to
Update-min-const, as Update-min-const is deterministic barring the calls to Check-min-const.
Similarly, there is exactly one non-rejecting path in Main-min-const, as Main-min-const is
deterministic barring the calls to Update-min-const. If G is not min-const, one of the calls to
Update-min-const (line 6) will lead in rejection. If G is min-const, the while-loop (lines 5 to 8)
will terminate without rejecting. If t is indeed reachable from s, this non-rejecting path goes to the
state ACCEPT (line 10). It t is not reachable from s, this path rejects (line 12).

3.2 FewUL algorithm for Reach on min-poly graphs

In this section, we introduce a modification of the previous algorithm to work for min-poly graphs.
Guessing a constant number of minimum-length paths simultaneously was possible in O(log n) space.
However, to do so for polynomially many paths would require significantly more space. So, instead
of storing entire paths, we will have to assign each path a unique value, and then guess them one by
one in some order corresponding to the assigned values. The following is a description of how this is
implemented.

Ordering of Paths: For any `-length path π : s v, we define π(i) as the label of the ith vertex
of the path, and φ(π) =

∑`
i=02ni+π(i). The bit representation of φ(π) is n× (`+ 1)-bits long and if

we divide it into (`+ 1) packets of n-bits each, the ith packet has only the bit corresponding to the
position π(i) set to 1 and all the other bits set to 0. It is easy to see that φ(π) is unique for each
path π.

Now, φ(π) is unique for π, but it takes polynomially many bits for representation. So, we need
a O(log n)-bit integer, i.e. an integer which is polynomial in n, and which for each of the vertex
v ∈ V , hashes perfectly, the φ(π) values of all the minimum-length s v paths.

We define another term, φm(π) = φ(π) mod m. We say that any integer m is good for a vertex
v ∈ V , if no two minimum-length s v paths p1 and p2 satisfy φm(p1) = φm(p2). We say that m is
good for the graph G, if it is good for all v ∈ V . We say that m is k-good for G, if it is good for all the
vertices in Ck. The following proposition ensures that there is always a polynomial sized good m.

Proposition 3.1. [6] For every constant c there is a constant c′ so that for every set S of n2-bit
integers with |S| ≤ nc there is a c′ log n-bit prime number m so that for all x, y ∈ S, x 6= y =⇒ x 6≡ y
mod m.

Guessing Paths in Lexicographic Order: Our algorithm will require guessing paths to a
vertex v and checking if the guessed paths are in lexicographic order w.r.t. φm. Here, we outline a
method of doing this in log-space.

Let c be a counter of log ` bits to keep track of how far we have traversed along a path. Initialize
this to 0. Assign log n bits to store the current vertex ρ of the current path π. Let π′ be the previous

9

path. Assign two variables, δπ and δπ′ , of logm bits each. to store the intermediate value of φm(π)
and previously calculated final value of φm(π′) respectively. Repeat the following two steps until c
reaches `.

• δπ = (δπ + 2nc+ρ) mod m.

• Increment c and choose one of ρ’s neighbour vertices non-deterministically and replace ρ by
this neighbour.

Setting δπ to δπ′ and setting δπ, ρ and c to 0, repeat the steps in the previous paragraph till we
have guessed all the q paths. Each time, before updating δπ′ , check if δπ is strictly less than δπ′ . If
not, reject there itself.

(Note: To calculate 2cn mod m in log-space, we first initialize log n bits to 0 and we keep a
counter which goes from 0 to cn and each time we increment it, we shift the current value in the
log n bits to the left by 1 bit to double it and if it exceeds m, we subtract m from it.)

Idea: Here, if we have a good m, the algorithm runs as in the case of min-const graphs, except a
slight change in the step where we guess the minimum-length paths for any vertex x. But, we are
still faced with the problem of obtaining a good m. In the following set of routines, we will guess the
value of m and use it while simultaneously verifying if it is indeed good. Note that this routine will
not be unambiguous any longer, because there could be several choices of m which are good for the
given graph. However, each choice of m will lead to exactly one accept state. Hence, we can label
these accept configurations with their respective choices of m, thus making it a FewUL routine.

Algorithm: The following is a FewUL algorithm which accepts the language:

Min-Poly Reachc = {(G(V,E), s, t) | ∃ s t path and ∀v ∈ V, p(v) ≤ nc}

Algorithm 3.4 Main-min-poly-few: Main FewUL routine for Min-Poly Reachc
1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ m < nc

′

3: k := 1
4: c0 := 1; Σ0 := 0; p0 := 1
5: (c1,Σ1, p1) = Update-min-poly(G, s, 0, c0,Σ0, p0,m)
6: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
7: (ck+1,Σk+1, pk+1) = Update-min-poly(G, s, k, ck,Σk, pk,m)
8: k := k + 1
9: end while

10: if Check-min-poly(G, s, t, k, ck,Σk, pk,m) > 0 then
11: Go to ACCEPT-m
12: else
13: REJECT
14: end if

10

Algorithm 3.5 Update-min-poly: Deterministic (barring Check-min-poly calls) routine com-
puting ck+1, Σk+1 and pk+1

1: Input: (G, s, k, ck,Σk, pk,m)
2: Output: ck+1,Σk+1, pk+1

3: ck+1 := ck; Σk+1 := Σk; pk+1 := pk;
4: num := 0;
5: for v ∈ V do
6: if Check-min-poly(G, s, v, k, ck,Σk, pk,m) = 0 then
7: for x such that (x, v) ∈ E do
8: num := num+ Check-min-poly(G, s, x, k, ck,Σk, pk,m);
9: if num > nc then

10: REJECT
11: end if
12: end for
13: if num > 0 then
14: ck+1 := ck+1 + 1; Σk+1 := Σk+1 + k + 1; pk+1 := pk+1 + num;
15: end if
16: end if
17: end for

Algorithm 3.6 Check-min-poly: UL routine to compute p(v), if d(v) ≤ k (returns 0 if d(v) > k)

1: Input: (G, s, v, k, ck,Σk, pk,m)
2: count := 0; sum := 0; paths := 0; paths.to.v := 0;
3: for x ∈ V do
4: Nondeterministically guess 0 ≤ q ≤ nc
5: if q 6= 0 then
6: Nondeterministically guess 0 ≤ ` ≤ k
7: Nondeterministically guess q paths p1, p2, . . . pq of length exactly ` each from s to x.
8: if ((∃i < j, φm(pi) ≤ φm(pj)) OR (paths are not valid)) then
9: REJECT

10: end if
11: count := count+ 1; sum := sum+ `; paths := paths+ q;
12: if x = v then
13: paths.to.v := q;
14: end if
15: end if
16: end for
17: if count = ck, sum = Σk and paths = pk then
18: Return the value of paths.to.v
19: else
20: REJECT
21: end if

Proof of Correctness

11

Claim 3.2.1. If m is k-good for G, and G is min-poly considering only vertices in Ck, given the
correct values of ck, Σk and pk, the algorithm Check-min-poly has exactly one non-rejecting path,
and it returns the correct value of p(v) if d(v) ≤ k and 0 if d(v) > k.

Proof. We argue that, since m is k-good for G, ∀x ∈ V , there is a unique way to guess the values
of q and `, such that the equalities count = ck, sum = Σk and paths = pk are satisfied. The only
difference between the routines Check-min-const and Check-min-poly is, the way of guessing q
many paths of length `. But, we have seen above that, if m is k-good for G, the guessing procedure
in Check-min-poly will also be unambiguous, as all the vertices for which minimum-length paths
are being guessed are in Ck. So, the proof of Claim 3.1.1 works for this claim too.

Claim 3.2.2. If m is k-good for G, G is min-poly considering only vertices in Ck and correct
values of ck,Σk and pk are given, the algorithm Update-min-poly runs deterministically barring
the calls to the routine Check-min-poly, and computes the correct values of ck+1,Σk+1 and pk+1.
It also rejects if G is not min-poly considering only vertices in Ck+1) (since now the check at line 9
is changed to num > nc).

Proof. The routine Update-min-poly runs similar to Update-min-const. The only difference is
that, it makes calls to Check-min-poly instead to Check-min-const. In Claim 3.2.1, we have
seen that if m is k-good for G, Check-min-poly works same as Check-min-const, and is correct.
Hence, by the same proof as that of Claim 3.1.2, this claim too is correct.

Observation 3.2. Observe that, since G is min-poly considering only vertices in C0 and we begin
with the correct values of c0,Σ0 and p0, by induction, Claims 3.2.1 and 3.2.2 imply that the values of
ck,Σk and pk calculated after every iteration of while-loop (lines 6 to 9) in the Main-min-poly-few
algorithm are correct, if m is good for G. Also, the iteration ends without rejecting, if and only if
the graph G is min-poly upto level-k.

Claim 3.2.3. If m is good for G, the algorithm Main-min-poly-few has at most one path to the
state ACCEPT-m.

Proof. Using Observation 3.2 and Claim 3.2.1, we know that there is exactly one non-rejecting
path in each call to Check-min-poly. Thus, there is exactly one non-rejecting path in each call to
Update-min-poly, as Update-min-poly is deterministic barring the calls to Check-min-poly.
Similarly, there is exactly one non-rejecting path in Main-min-poly-few, as Main-min-poly-few
for a particular choice of m, is deterministic barring the calls to Update-min-poly. If t is indeed
reachable from s, this non-rejecting path goes to ACCEPT-m, as m is guessed initially and is not
changed thereafter.

Claim 3.2.4. If m is not good for G, irrespective of whether G is min-poly or not, Main-min-
poly-few will always reject.

Proof. Let k be the smallest integer such that m is not k-good for G (i.e. it is (k-1)-good for G), and
let v be the lexiographically first vertex, such that there exist atleast two minimum-length s v
paths p1 and p2 satisfying φm(p1) = φm(p2).

If G is min-poly, the first k calls to Update-min-poly runs unambiguously to give correct
output. In the (k+ 1)th call to Update-min-poly (we are having the correct values of ck,Σk and pk
and the fourth parameter passed to any Check-min-poly call will be k), consider the first call to

12

Check-min-poly. For x = v, if we guess q = p(v), then the paths cannot be in strictly decreasing
order w.r.t. φm and the algorithm will reject. If we guess q > p(v) , then the algorithm will fail to
find q paths and reject. If we guess q < p(v) , then paths will never be equal to pk, as the q for
some other vertex u will then need to be greater than p(u) (for paths to become equal to pk), which
is not possible.

If G is not min-poly, then there is a smallest integer k′ such that G is min-poly upto level-(k′− 1)
and is not min-poly upto level-k′. If k′ ≤ k then by Claim 3.2.2 first k′−1 calls to Update-min-poly
runs to give correct output and the k′th call to Update-min-poly rejects. The case k′ > k has the
same proof as the case when G is min-poly.

Lemma 3.2. The algorithm Main-min-poly-few is correct and FewUL.

Proof. If m is not good for G, then the algorithm Main-min-poly-few will reject according to the
Claim 3.2.4. If m is good for G, then there is at most one path which reaches ACCEPT-m (Claim
3.2.3). As there are polynomially many possible values of m, Main-min-poly-few is FewUL. After
covering all the reachable vertices, the while loop (lines 6 to 9) in Main-min-poly-few terminates
with correct values of ck, Σk and pk, if m is good for G and G is min-poly (Observation 3.2). Before
reaching ACCEPT-m we do a final check to see whether or not vertex t has been covered. As this
case occurs only when m is good for G and G is min-poly (Claims 3.2.3 and 3.2.4), the correct value
of p(t) will be returned (Claim 3.2.1) and thus the final decision will be correct.

3.3 UL algorithm for Reach on min-poly graphs

The algorithm presented in the previous section is not unambiguous because there can be more than
one good m. To address this, we modify the Main-min-poly-few routine in such a way that we
always use the least good m (let us call this integer f). The Check-min-poly and Update-min-poly
routines are already unambiguous and need no change.

Idea: The main idea is to non-deterministically guess f , and to verify that f is the smallest good
integer for the graph G. This is done using an unambiguous algorithm Find-fault-min, which
given an integer, verifies that it is not good. This routine is run over all the values less than f .
Finally when we reach f , we run an algorithm similar to Main-min-poly-few and accept if and
only if it is good and there is a path from s to t.

The challenge, in this case, is to make sure that Find-fault-min also runs unambiguously. This
is achieved as follows. If an integer m < f is not good, then there must be a least integer k1(m)
such that m is not k1(m)-good. The algorithm Find-fault-min guesses k1 and tries to check if
k1 = k1(m). Till one level before k1, it repeatedly calls the algorithm Update-min-poly to update
ck,Σk and pk values. Then, it stops updating these values and tries to find a vertex v with d(v) = k1
in order to certify that m is not k1-good. For any such vertex v, there must exist a, b ∈ V such that
a, b are in-neighbours of v at distance k1 − 1 from s and there must be two paths, pa through a and
pb through b such that φm(pa) = φm(pb).

A UL routine Find-Match((G, s, k, a, b, α, β,m) guesses α (respectively β) number of s a
(s b) paths and pairwise checks for collision w.r.t. the function φm between s a and s b
paths.

13

Algorithm: The following is a UL algorithm which decides the language Min-Poly Reachc.

Algorithm 3.7 Main-min-poly: Main UL routine for Min-Poly Reachc
1: Input: (G, s, t)
2: Non-deterministically guess 2 ≤ f < nc

′4

3: m := 2
4: while m < f do
5: Find-fault-min(G, s,m)
6: m := m+ 1
7: end while
8: k := 1
9: c0 := 1; Σ0 := 0; p0 := 1

10: (c1,Σ1, p1) = Update-min-poly(G, s, 0, c0,Σ0, p0,m)
11: while k < n− 1 and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
12: (ck+1,Σk+1, pk+1) := Update-min-poly(G, s, k, ck,Σk, pk,m)
13: k := k + 1
14: end while
15: if Check-min-poly(G, s, t, k, ck,Σk, pk,m) > 0 then
16: ACCEPT
17: else
18: REJECT
19: end if

14

Algorithm 3.8 Find-fault-min: UL routine to check if m is not good for G

1: Input: (G, s,m)
2: non-deterministically guess 1 < k1 < n
3: c0 := 1; Σ0 := 0; p0 := 1; k := 1
4: while k < k1 do
5: (ck,Σk, pk) = Update-min-poly(G, s, k, ck−1,Σk−1, pk−1,m)
6: k := k + 1
7: end while
8: for v ∈ V do
9: if Check-min-poly(G, s, v, k − 1, ck−1,Σk−1, pk−1,m) = 0 then

10: valid := false
11: for x such that (x, v) ∈ E do
12: if Check-min-poly(G, s, x, k − 1, ck−1,Σk−1, pk−1,m) > 0 then
13: valid := true
14: end if
15: end for
16: if valid then
17: for (a, b)|(a, v) and (b, v) ∈ E do
18: α := Check-min-poly(G, s, a, k − 1, ck−1,Σk−1, pk−1,m)
19: β := Check-min-poly(G, s, b, k − 1, ck−1,Σk−1, pk−1,m)
20: if (α > 0) ∧ (β > 0)∧ Find-match(G, s, k, a, b, α, β,m) then
21: Return
22: end if
23: end for
24: end if
25: end if
26: end for
27: REJECT

15

Algorithm 3.9 (Find-match): UL routine to find paths with matching φm values.

1: Input: (G, s, k, a, b, α, β,m)
2: collision found := false
3: for i = 1 to α do
4: Guess a path π of length k − 1 from s to a
5: if (i ≥ 2) ∧ (φm(π) ≥ X) then
6: REJECT
7: end if
8: X := φm(π)
9: for j = 1 to β do

10: Guess a path π′ of length k − 1 from s to b
11: if (j ≥ 2) ∧ (φm(π′) ≥ Y) then
12: REJECT
13: end if
14: Y := φm(π)
15: if X = Y then
16: collision found := true
17: end if
18: end for
19: end for
20: if collision found then
21: Return true
22: else
23: Return false
24: end if

Proof of Correctness Let f ′ be the smallest good value for the graph G.

Claim 3.3.1. If m is not good and G is min-poly then there exists exactly one non-reject path in
Find-fault-min.

Proof. We prove this by considering the following cases :

• If k1 > k1(m) + 1, then in the while loop (lines 4- 7), when k = k1(m) + 1, Update-min-poly
will reject (in the proof of Claim 3.2.4 see the case when G is min-poly).

• If k1 = k1(m) + 1, then in the last iteration of while loop (lines 4- 7) when k = k1− 1 = k1(m),
correct values will be computed by Update-min-poly as m is (k − 1)-good and G is min-poly
(Claim 3.2.2). But, after the loop termination, in line 9 when Check-min-poly is called for
the first time with fourth parameter as k− 1 = k1(m), it will reject since m is not k1(m)-good
(in the proof of Claim 3.2.4 see the case when G is min-poly).

• If k1 < k1(m), then Find-match will never find two paths p1 and p2 satisfying φm(p1) =
φm(p2), and the if condition on line 15 will never be satisfied (as X will never be equal to Y).
So, it will always return false and thus, Find-fault-min will reject at line 27.

• If k1 = k1(m), the values ck,Σk and pk will be updated by Update-min-poly calls in the
while loop (lines 4-7), until k becomes equal to k1 (or k1(m)). Let u be the lexicographically

16

first vertex such that there exist two s u paths p1 and p2 satisfying φm(p1) = φm(p2).
When v = u, in the call to Find-match at line 20, the if condition on line 15 will be satisfied
when X = φm(p1) and Y = φm(p2), setting the variable collision found to be true, and in
line 21 true will be returned as a final boolean value. So, in line 21 Find-fault-min will
return to Main-min-poly, and this is the only non-reject path.

Claim 3.3.2. If m is good and G is min-poly, then Find-fault-min rejects.

Proof. Notice that, irrespective of the value of k1 guessed, Find-match will not be able to find
two paths p1 and p2 such that φm(p1) = φm(p2) as m is good. Hence, in line 21, Find-fault-min
algorithm will never return and thus will reject in line 27.

Theorem 3. Testing reachability in graphs augmented with log-space computable min-poly weighting
schemes, can be done by a non-deterministic log-space algorithm unambiguously and hence is in the
complexity class UL.

Proof. To prove this, we only need to show that the algorithm Main-min-poly is correct and UL.
If G is not min-poly, Main-min-poly will always reject irrespective of what happens in the while

loop (lines 4-7), because from line 8 onwards it runs similar to Main-min-poly-few with m = f .
Irrespective of m Main-min-poly-few rejects when the input graph is not min-poly (Theorem 3.2),
and hence Main-min-poly will also reject.

Now, consider the case when G is min-poly. We argue that if f = f ′, Main-min-poly accepts
in at most one path, and if f 6= f ′, Main-min-poly rejects. Consider the case f = f ′. In each
iteration of the first while loop (lines 4-7) in Main-min-poly, m is not good and thus by claim 3.3.1,
the while loop terminates in exactly one path. The rest of the algorithm (lines 8-19) is identical to
Main-min-poly-few. So, by the proof of Theorem 3.2 there is at most one accept path. Note,
that here unlike in Main-min-poly-few, we will reach a unique accept state corresponding to
m = f = f ′.

Now consider f 6= f ′. If f < f ′, then at line 7, when the first while loop terminates, m = f < f ′,
the rest of the algorithm will reject as f is not good for G (Claim 3.2.4). If f > f ′, then when in
first while loop m = f ′, Find-fault-min will reject, as m is good (Claim 3.3.2).

Now we argue correctness. As argued, line 15 in Main-min-poly will be reached only when
f = f ′. At this point, ck,Σk and pk are calculated correctly, as Observation 3.2 still holds. Thus,
by Claim 3.2.1, Check-min-poly outputs the correct value of p(t) as m = f ′ is good and thus the
final result is correct.

4 Reachability on max-poly layered DAGs

It is known that Reach on general directed graphs reduces to Reach on layered DAGs, making the
latter also NL-complete. In this section, we will look to construct a UL algorithm to solve Reach
on layered DAGs, rather than general graphs. 5

5In this connection, we remark that it is unclear how Reach in the case of arbitrary DAGs can be reduced in
log-space to Reach in layered DAGs while preserving the max-poly property. It is easy to verify that the standard
reduction fails in this aspect. The reduction works as follows : let (G = (V,E), s, t) be an instance of the original
reachability problem. Define G′ we make |V | labelled copies of V . Adjacency between adjacent copies of V is made

17

In order to arrive at the algorithm for Reach in max-poly layered DAGs, we solve a harder
problem on a more specific class of graphs. This is a variant of the LongPath problem (Given
(G, s, t, j) where s and t are vertices in the graph G, and j is an integer - the LongPath problem
asks to check if there is a path from s to t of length at least j) where the graph G has a unique
source s.

We first give the reduction from Reach on layered DAGs to LongPath on single-source DAGs.

4.1 Reducing Reach on layered DAGs to LongPath on single-source DAGs

This section presents a reduction from Reach on layered DAGs to LongPath on single-source DAGs.
Since the former is known to be complete for the class NL, it makes LongPath on single-source
DAGs NL-complete as well.

Lemma 4.1. Reach on layered DAGs reduces via a log-space many-one reduction to LongPath
on single-source DAGs.

More formally, there is a function f , computable in log-space, that transforms an instance
(G(V,E), s, t) of Reach to an instance (G′(V ′, E′), s′, t, 2n + 1) of LongPath, where n = |V |,
such that t is reachable from s in G if and only if there exists a path of length at least 2n+ 1 from
s′ to t in G′. In addition, if G is max-unique (max-poly), then G′ is max-unique (max-poly).

Proof. Since the graph G(V,E) is a layered DAG, we can assume that the vertices of the G are
numbered such that, edges always go from a lower numbered vertex to a higher numbered vertex.
Let V = {v1, v2, . . . , vn} be this numbering. We will construct G′(V ′, E′) as follows: In addition to
the edges among the vertices in V , we add a new source vertex s′ and add edges from s′ to all other
vertices in V .

Formally,
V ′ = V ∪ {s′}

E′ = E ∪ {(s′, v) | v ∈ V }

Further, we ‘apply’ the following weighting scheme to G′:

W (u, v) =

2n, if (u, v) = (s′, s).

2i, if (u, v) = (s′, vi) ∀ 1 ≤ i ≤ n.
1, otherwise.

(1)

The weight of the edge (s′, s) = 2n and for vertices vi 6= s, weight of (s′, vi) is 2i. Note that G′ has
exactly one source vertex s′ and hence is a valid input for our algorithm to solve LongPath.

Now we argue the that if G had a unique path (polynomially many paths) of maximum length
from s to any vertex v, then so will be the case with G′. This condition is easily seen for v /∈ V . For
a vertex vi ∈ V , we claim that among all the paths not going through s, there is exactly one path of
maximum length and this is the path corresponding to the edge (s′, vi) of length 2i. If not, choose
a longest path (say p) which is not corresponding to the edge (s′, vi). Let vj (j < i) be the first
vertex in p from V . Clearly, p must use the path corresponding to the weighted edge (s′, vj). Hence,
the length of the path p can at most be 2j + (i− j) = i+ j < 2i. This contradicts the choice of p.

same as the adjacency of the graph G. Connect adjacent copies of t. A layering is automatically obtained as a part of
the reduction.

18

v1

s

v2 . . . vi . . . vj . . . vn

t

s′
2n

4
2i

2j

2n

Figure 1: Construction for the reduction described in Lemma 4.1

Thus, for a vertex vi ∈ V that is not reachable from s, the maximum length path in G′ is unique.
For a vertex vi ∈ V that is reachable from s, the maximum length path not through s is of weight
exactly 2i, but the paths from s′ to vi through s are of length at least 2n+ 1 > 2i. Additionally,
we can see that, if there were ` paths of maximum length from s to any vertex vi in G, then the
number of maximum length paths from s′ to vi is also `.

We now argue correctness of our reduction. Suppose that t is not reachable from s in G. In
this case, none of the paths from s′ to t will pass through s. Hence, using the above argument, we
know that the length of any path from s′ to t cannot be greater than 2n. On the other hand, if t is
reachable from s in G (say by path p), then the path (s′, s) concatenated with p is a path of length
≥ 2n+ 1 from s′ to t.

Observation 4.1. Since G is a layered DAG, by labelling s′ with an integer less than v0, we can
make sure that G′ is also a DAG with all the edges moving from vertices with lower labels to those
with higher labels.

Now we turn to this special case of LongPath problem. LongPath for max-unique DAGs with
a unique source has been studied by [9]. The UL algorithm in [9] is for LongPath on max-unique
graphs having a single sink t. In our version of LongPath, we will consider paths from s (as
opposed to paths to t in [9]) and hence we will consider only graphs with a unique source s. We
will extend their algorithm to max-poly layered DAGs, by first giving a FewUL algorithm, and then
converting it to a UL algorithm using a strategy similar to the min-poly Reach algorithm in Section
3.

4.2 FewUL algorithm for LongPath on max-poly single-source DAGs

In a way similar to our adaptation of algorithm for min-unique graphs of [12] to work with min-poly
graphs, we adapt the algorithm proposed in [9] for max-unique DAGs (with a unique sink) to the
case for max-poly DAGs with a unique source. Along with the reduction we mentioned above from
Reach to LongPath in such graphs (preserving their max-unique or max-poly property), this gives
an algorithm for reachability testing in such graphs.

We introduce notation required for our exposition. D(v) is the length of the longest s v
path in G. Additionally, we define P (v) as the number of maximum-length s v paths in G.
We reuse the term Ck to denote the set {v | D(v) < k}. We also reuse the following - ck = |Ck|,
Σk =

∑
v∈Ck

D(v) and pk =
∑

v∈Ck
P (v).

19

We build the intuition through an example setting where an idea similar to that of the algorithm
Check-min-poly fails. Suppose we have the correct values of ck, Σk and pk. Even then, suppose for
a vertex v, we guess D(v)6 < k whereas originally D(v) ≥ k. The algorithm, in this non-deterministic
choice can still make it to the original summation by guessing for another u that D(u) ≥ k whereas
originally D(u) < k. Since the algorithm is not verifying guesses of the kind D(u) ≥ k (that is,
q = 0). In [9], this problem is addressed by introducing a new parameter T =

∑
v∈V D(v). The

value of M is also non-deterministically guessed, which if guessed correctly, will facilitate verification
of guess D(u) ≥ k.

In our modification, along with T , we use another parameter S =
∑

v∈V P (v). Both T and S
are initially guessed (guessed values are called M and P respectively) and verified in the end.

Idea: The routine Check-max-poly(G, s, v, ck,Σk, pk,m), which given the correct values of ck,
Σk and pk, tests whether D(v) ≥ k unambiguously and outputs (D(v), P (v)) if D(v) < k and
outputs (0, 0) if D(v) ≥ k.

For each vertex x ∈ V , the routine guesses whether or not D(x) ≥ k. It also guesses the number
of longest s x paths and sequentially guesses each of these paths. The algorithm keeps a count of
vertices in Ck. Additionally, both for vertices in Ck and those outside, the routine separately keeps
an account of the number and length of longest paths from s to each vertex. It maintains the sums
of these values and later verifies these values with the known values of ck, Σk, pk, M and P . These
checks will all hold true only at the unique path where all the values are guessed correctly. This
makes sure that the routine has at most one non-reject computational path. The routine returns
(0, 0) if it had guessed D(v) ≥ k, and returns (D(v), P (v)) otherwise.

As for the inductive computation of ck+1, Σk+1 and pk+1 from ck,Σk, and pk, Update-max-poly
finds every vertex v such that D(v) is exactly equal to k. To do this, the routine makes sure that
D(v) ≥ k and does not have any in-neighbour x with D(x) ≥ k. The routine then updates the
values of ck+1, Σk+1 and pk+1 with the values D(v) and P (v) obtained from every such v. The
routine also checks if the max-poly condition is followed, and rejects if not.

The main reachability test algorithm, given (G′, s′, t′) as the input, constructs, in log-space, the
instance (G, s, t, j) of the special case of LongPath problem. It runs the remaining algorithm with
this new graph. The algorithm guesses m, M and P , and using these values, inductively computes
the values of ck, Σk and pk until all vertices are covered. Finally, it checks whether or not D(t) ≥ j,
and returns the answer.

Algorithm: The following is a FewUL algorithm which decides the language:

Max-Poly LongPathc = {(G(V,E), s, t, j) | ∃s t path of length ≥ j and ∀v ∈ V, P (v) ≤ nc}
6D(v)?

20

Algorithm 4.1 Check-max-poly: An unambiguous routine to determine if D(v) ≥ k and return
the values (D(v), P (v)) if not.

1: Input: (G, s, v, k, ck,Σk, pk,m, f)
2: count := 0; sum := 0; sum′ := 0; paths := 0; paths′ := 0; paths.to.v := 0; length.to.v := 0;
3: for x ∈ V do
4: Non-deterministically guess if D(x) ≥ k
5: if the guess is NO then
6: Non-deterministically guess 0 ≤ ` < k and 0 < q ≤ nc
7: Non-deterministically guess q paths p1, p2, . . . pq of length ` each from s to x.
8: if ((∃i < j, φf (pi) ≤ φf (pj)) OR (paths are not valid)) then
9: REJECT

10: end if
11: Non-deterministically guess q paths p1, p2, . . . pq of length ` each from s to x.
12: if (((∃i < j, φm(pi) ≤ φm(pj)) OR (paths are not valid)) then
13: REJECT
14: end if
15: count := count+ 1; sum := sum+ `; paths := paths+ q;
16: if x = v then
17: paths.to.v := q;
18: length.to.v := `;
19: end if
20: else
21: Non-deterministically guess 0 < q ≤ nc
22: Non-deterministically guess k ≤ ` < n
23: Non-deterministically guess q paths p1, p2, . . . pq of length ` each from s to x.
24: if ((∃i < j, φf (pi) ≤ φf (pj)) OR (paths are not valid)) then
25: REJECT
26: end if
27: sum′ := sum′ + `; paths′ := paths′ + q;
28: end if
29: end for
30: if count = ck; sum = Σk; paths = pk; paths

′ + paths = P ; sum′ + sum = M then
31: Return the value of paths.to.v and length.to.v.
32: else
33: REJECT
34: end if

21

Algorithm 4.2 Update-max-poly: An unambiguous routine computing ck+1, Σk+1 and pk+1

from ck, Σk and pk.

1: Input: (G, s, k, ck,Σk, pk,m, f)
2: ck+1 := ck; Σk+1 := Σk; pk+1 := pk; flag := true; num := 0;
3: for v ∈ V do
4: if Check-max-poly(G, s, v, k, ck,Σk, pk,m,m) then
5: for x such that (x, v) ∈ E do
6: if Check-max-poly(G, s, x, k, ck,Σk, pk,m,m) then
7: flag := false
8: end if
9: if D(x) = k − 1 then

10: num := num+ P (x);
11: end if
12: if num > nc then
13: REJECT
14: end if
15: end for
16: if flag then
17: ck+1 := ck+1 + 1; Σk+1 := Σk+1 + k; pk+1 := pk+1 + num;
18: end if
19: end if
20: end for

Algorithm 4.3 Main-max-poly-few: The main FewUL algorithm for LongPath

1: Input: (G, s, t)
2: Non-deterministically guess 2 < m < nc

3: Non-deterministically guess 0 < M < n2 (M =
∑

v∈V D(v))
4: Non-deterministically guess 1 < P < nc+1 (P =

∑
v∈V P (v))

5: k := 0;
6: c0 := 0; Σ0 := 0; p0 := 0;
7: c1 := 1; Σ1 := 0; p1 := 1;
8: while ck−1 6= ck do
9: k := k + 1;

10: ck,Σk, pk := Update-max-poly(G, s, k, ck,Σk, pk,m,m)
11: end while
12: if Check-max-poly(G, s, t, j, cj ,Σj , pj ,m,m) then
13: REJECT
14: else
15: go to state ACCEPT-m
16: end if

Proof of correctness

Claim 4.2.1. Irrespective of the guessed values of M and P , if the input values ck, Σk and pk are
correct, then all non-reject paths of Check-max-poly return the correct P (v) and D(v) for v such

22

that D(v) < k. (For other vertices it returns (0, 0))

Proof. This can be analyzed by the following cases :

• Suppose that D(v) < k. If the algorithm guesses otherwise, it will be unable to guess a witness
path of length ≥ k, and will hence reject. If it guesses correctly, then,

– If the algorithm guesses ` > D(v), then it will not be able to guess any path of length `
and hence will reject.

– If the algorithm guesses ` < D(v), then the value of sum will not match Σk unless the
algorithm guesses ` > D(y) for some other vertex y, which will lead it to reject.

– Now, if the algorithm guesses q > P (v) for some v ∈ V , then it will fail to compute q
such paths of length ` (because ` = D(v)).

– If the algorithm guesses q < P (v), then paths will not match pk as, similar to the case
with `, compensation is not possible.

Hence, for each v with D(v) < k, the algorithm returns the correct P (v) and D(v).

• Now suppose that D(v) ≥ k. If the algorithm guesses otherwise, this causes an extra increment
for count. Thus, the value of count will not match ck, because to do so, the algorithm must
guess D(u) ≥ k for some vertex u for which this is not true. But, from the argument used
in the previous case, we know that this is not possible. Hence, it will reject. However if the
algorithm guesses correctly, then the algorithm outputs P (v) = 0 and D(v) = 0.

Claim 4.2.2. If the algorithm Check-max-poly works correctly for parameter k, then given the
correct values of ck,Σk and pk, the algorithm Update-max-poly computes the correct values of
ck+1,Σk+1 and pk+1.

Proof. The algorithm first assigns ck+1 := ck,Σk+1 := Σk and pk+1 := pk. Now, to update these
values we need the exact set of vertices v with D(v) = k. For each such v, the algorithm increments
ck+1 by 1 and Σk+1 by k. The algorithm, for each v, checks whether D(v) ≥ k and for each of its
neighbours u, checks if D(u) < k. If both the conditions are true, then we know that D(v) = k.
For each such neighbour u for which D(u) = k − 1, the algorithm adds P (u) to num which at the
end of the loop results in num = P (v). The algorithm then increments pk+1 by num. Thus all the
three parameters are updated correctly.

Observation 4.2. Since we begin with the correct values of c0, Σ0 and p0, by induction, Claims
4.2.1 and 4.2.2 imply that the values of ck, Σk and pk calculated at any time in the algorithm are
always correct.

Claim 4.2.3. If M = T , P = S and m is good, and if the input values ck, Σk and pk are correct,
then there is exactly one non-reject path in Check-max-poly

Proof. The equalities paths′ + paths = P and sum′ + sum = M can only be satisfied if, for each
vertex v, the algorithm guesses ` = D(v) and q = P (v), and all q paths in lexicographic order w.r.t.
φm. This can happen only in a unique way when m is good.

23

Claim 4.2.4. If M = T , P = S and m is not good, given the correct values of ck, pk and
Σk, the algorithm Check-max-poly (and hence both the algorithms Update-max-poly and
Main-max-poly-few) always rejects.

Proof. If m is not good, then there exists a vertex v such that the graph has at least two s v
paths p1 and p2 satisfying φm(p1) = φm(p2). So, if q = P (v), then the paths cannot be in strictly
decreasing order and the algorithm will reject. If q > P (v), then the algorithm will fail to find q
paths and reject. If q < P (v), then paths will never be equal to pk, as the q for some other vertex u
will then need to be guessed to be greater than P (u), which will lead it to reject.

Claim 4.2.5. If M 6= T or P 6= S, then the algorithm Main-max-poly-few always rejects
irrespective of the guessed value of m.

Proof. We analyze this by the following cases.

• IfM > T (P > S), then we will never get paths for which sum+sum′ = M (paths+paths′ = P)
will be true.

• If M < T (P < S), and suppose the algorithm Main-max-poly-few reaches the the stage
at which D(v) < k for all vertices v ∈ V . At this stage in the algorithm Check-max-poly,
we will obtain sum = Σk (paths = pk) and sum′ = 0 (paths′ = 0). However, due to the
correctness of the value of Σk (pk), Σk = T (pk = S). Thus, the check sum + sum′ = M
(paths+ paths′ = S) will fail.

Claim 4.2.6. If M = T , P = S and m is good, then there is exactly one path in Main-max-poly-
few which reaches the state ACCEPT-m.

Proof. By Claim 4.2.3 and Observation 4.2 we know that there is exactly one non-rejecting path in
each call to Check-max-poly. So, there is exactly one non-rejecting path in each call to Update-
max-poly, as Update-max-poly is deterministic barring the calls to Check-max-poly. Hence,
there is exactly one non-rejecting path in Main-max-poly-few, as Main-max-poly-few (after
guessing m,M and P), is deterministic barring the calls to Update-max-poly. This non-rejecting
path goes to ACCEPT-m as m is fixed initially and is not changed thereafter.

Lemma 4.2. The algorithm Main-max-poly-few is correct and is FewUL.

Proof. If the value of m guessed is not good, then the algorithm Main-max-poly-few always
rejects (Claims 4.2.4 and 4.2.5), and if it is good, there is at most one computational path to the
state ACCEPT-m (Claims 4.2.5 and 4.2.6). And as the number of choices for m is bounded by a
polynomial, Main-max-poly-few is FewUL.

When all the vertices are covered, the while loop in Main-max-poly-few stops. At this
point we have correct values of ck, Σk and pk (Observation 4.2) and before the algorithm reaches
ACCEPT-m, it performs a final check to see whether or not D(t) ≥ j. As this case occurs only
when m is good, the correct value of D(t) will be returned (Claim 4.2.1) and thus the final decision
will be correct.

24

4.3 UL algorithm for LongPath on max-poly single-source DAGs

The primary issue preventing the algorithm in the previous section from being unambiguous was the
non-unique value of m. There is no reason to expect only one integer m to be able to hash the φm
values of the paths in a graph without collisions. To overcome this issue, in the following algorithm,
we attempt to find the least such m and use this integer to hash the paths in our algorithm.

Idea: The idea is similar to the one used in the case of Reach in max-poly graphs. Firstly, we
guess this smallest good integer f , and verify that all smaller integers are indeed not good. However,
instead of doing so independently, here we run the algorithm for m and f simultaneously. This is
because we want to verify the smaller m values only on the correct path for f . The reason for this is
that, due to the added guesses of M and P , the number of non-reject paths on m in the algorithm
will not remain unique if the test for m is run independently.

Algorithm: The following is a UL algorithm which decides the language Max-Poly LongPathc.

Proof of correctness

Claim 4.3.1. If m is not good and f is good then there exists exactly one non-reject path in
Find-fault-max.

Proof. Since f is good, we know that, when k = n− 1, in line 33 of Find-fault-max, if M or P
are guessed incorrectly, our algorithm will reject (see proof of Claim 4.2.5). So, we will assume that
M and P are guessed correctly.

• If k1 > k1(m), then in the while loop, when k = k1(m), Update-max-poly will find two
paths p1 and p2 such that φm(p1) = φm(p2) and will reject.

• If k1 < k1(m) then Find-match will never find two paths p1 and p2 such that φm(p1) = φm(p2)
for k = k1. So, it will always return false and thus Find-fault-max will reject at k = k1 + 1.

• If k1 = k1(m) : let u be the lexicographically first vertex such that there exist two s u
paths p1 and p2 satisfying φm(p1) = φm(p2). Hence, when v = u the algorithm will jump to
line 32 and this is the only non-reject path.

Claim 4.3.2. If m is good or if f is not good then Find-fault-max rejects.

Proof. If f is not good, then in the first iteration of the while loop, Update-max-poly will reject
due to Claims 4.2.4 and 4.2.5. If m is good, then irrespective of k1 guessed, Find-match will not be
able to find two paths p1 and p2 such that φm(p1) = φm(p2). Hence, the routine Find-fault-max
will never break out of the loop in line 23 and will reject in line 31.

Claim 4.3.3. If f = f ′, Main-max-poly accepts in at most one path.

Proof. In case we guess M 6= T or P 6= S, the algorithm will reject due to Claim 4.2.5. When
M = T and P = S, in each iteration of the while loop, m < f ′ and hence is not good. Thus by
Claim 4.3.1, all iterations are unambiguous, and the while loop terminates in exactly one path.

25

Algorithm 4.4 Find-fault-max: A UL routine to verify that an integer m is bad for G.

1: Input: (G, s,m, f)
2: Non-deterministically guess 1 < k1 < n
3: c0 := 0; Σ0 := 0; p0 := 0; k := 1
4: while k ≤ k1 do
5: Compute ck,Σk and pk from ck−1,Σk−1 and pk−1 using both m and f to hash
6: k := k + 1
7: end while
8: for v ∈ V do
9: if D(v) ≥ k1 then

10: valid := true
11: for x such that (x, v) ∈ E do
12: if D(x) ≥ k1 then
13: valid := false
14: end if
15: end for
16: if valid then
17: for (a, b) | (a, v) and (b, v) ∈ E do
18: if D(a) = k − 1 then
19: if D(b) = k − 1 then
20: α := P (a)
21: β := P (b)
22: if (α > 0) ∧ (β > 0) ∧ (Find-match(a, b) = true) then
23: goto line 32
24: end if
25: end if
26: end if
27: end for
28: end if
29: end if
30: end for
31: REJECT
32: while k < n and (ck−1,Σk−1, pk−1) 6= (ck,Σk, pk) do
33: Compute ck,Σk and pk from ck−1,Σk−1 and pk−1 using f to hash
34: k := k + 1
35: end while

26

Algorithm 4.5 Main-max-poly: The main UL routine to solve LongPath on max-poly single-
source DAGs.

1: Input: (G, s, t, j)
2: Non-deterministically guess 2 ≤ f < nc

′

3: Non-deterministically guess 0 ≤M ≤ n2 (M =
∑

v∈V D(v))
4: Non-deterministically guess 1 ≤ P ≤ nc+1 (P =

∑
v∈V P (v))

5: m := 2
6: while m < f do
7: Find-fault-max(m)
8: m := m+ 1
9: end while

10: if D(t) ≥ j then
11: ACCEPT
12: else
13: REJECT
14: end if

The rest of the algorithm is also unambiguous, since Check-max-poly is UL (Claim 4.2.3) and
Observation 4.2 still holds.

Claim 4.3.4. If f 6= f ′, Main-max-poly rejects.

Proof. If f < f ′, then f is surely not good, and during the first iteration of the while loop,
Find-fault-max will reject due to Claim 4.3.2. If f > f ′ then, when m = f ′ in the while loop,
Find-fault-max will reject due to Claim 4.3.2 because m is good.

Theorem 4. Testing reachability in layered DAGs augmented with log-space computable max-poly
weighting schemes, can be done by a non-deterministic log-space algorithm unambiguously and hence
is in the complexity class UL.

Proof. Lemma 4.1 shows that Reach on layered DAGs can be reduced to LongPath on single-source
DAGs. Hence, to prove the theorem, we only need to show that the algorithm Main-max-poly
solves LongPath correctly and is in UL.

The unambiguity follows from Claims 4.3.3 and 4.3.4. We will reach line 10 in Main-max-poly
only when f = f ′, and at this point, ck,Σk, pk are calculated correctly, as Observation 4.2 still holds.
Thus, by Claim 4.2.2, we get the correct value of P (t) and the final result is correct.

5 Discussion and Open Problems

We designed UL algorithms for Reach in layered DAGs augmented with min-poly or max-poly
weighting schemes. This is an improvement of previous results by Allender and Reindthart [12],
where they designed a UL algorithm for Reach in min-unique graphs, and by Limaye, Mahajan and
Nimbhorkar [9], where they designed a UL algorithm for LongPath in max-unique single source
DAGs.

27

UL-equivalence of min-poly and max-poly weighting schemes: To make the study complete,
we also explore the converse of our result - namely deriving weighting schemes from UL algorithms.
This has already been studied in the case of min-unique weighting schemes. The following proposition
can be argued by a minor variant of a proof in [10]. We include it here for completeness.

Proposition 5.1. The following statements are equivalent :

1. NL = UL.

2. There is a polynomially bounded UL-computable min-unique weighting scheme for any DAG.

3. There is a polynomially bounded UL-computable min-poly weighting scheme for any DAG.

4. There is a polynomially bounded UL-computable max-unique weighting scheme for any layered
DAG.

5. There is a polynomially bounded UL-computable max-poly weighting scheme for any layered
DAG.

Proof. (2) =⇒ (3) and (4) =⇒ (5) follows from the definitions. (1) =⇒ (2) follows from [10].
(3) =⇒ (1) follows from Theorem 1. (5) =⇒ (1) follows from Theorem 2.

To complete the cycle, we will show (1) =⇒ (4). If NL = UL, we need to provide a UL-computable
max-unique weighting scheme for any layered DAG G. We will use a weighting scheme very similar
to the one used in Theorem 4.1 of [10]. We include the full proof here for completeness.

The idea (due to [10]) is to compute a spanning tree of G rooted at s using reachability queries.
Since NL = co-NL, under the assumption that NL = UL, we can conclude that UL = co-UL. And for
any language A in UL, LA is in UL. Now, consider the language A = {(G, s, v, k) | there is a path
from s to v of length ≥ k} is in UL (as it is in NL). LA is also in UL.

Borrowing the idea from [10], we construct a spanning tree of G rooted at s using queries to A.
So, this construction is in UL. For convenience we describe their construction, while at the same
time, highlight the difference in assigning weights in our case. A vertex v is said to be in level k if
D(v) = k. An edge (u, v) is in the tree if for some k, v is in level k and u is the lexicographically
first vertex in level k − 1 which has an edge to v. Now for each edge in the tree, give a weight
n2. For the rest of the edges give a weight 1 (This weighing scheme is opposite to the one used in
the original proof). We can see that, of all maximum-length paths to a vertex on level k, there is
exactly one with all edges of weight n2. Hence, the graph is max-unique.

Constructing this tree and checking if an edge (u, v) belongs to this tree can be done trivially in
log-space by querying A for u and v. Thus, assigning weights for this graph is in LA ⊆ UL.

We now list down some of the open problems that the work presented in the paper lead to.

Open Problem 1: Min/Max-poly weighting scheme design. Are min-poly or max-poly
log-space computable weighting schemes easier to design than min-unique log-space computable
weighting schemes? In the former case, the restrictions on the number of minimum weight s v
paths is less stringent. Hence it is conceivable that such a weighting scheme is easier to design.
Designing such a weighting scheme would immediately imply that NL = UL.

Indeed, it may be simpler to design such weighting schemes for restricted graph classes. We
know a min-unique weighting scheme for grid graphs [5]. If we are able to extend this scheme to
make it work for “Monotone 3D Grid Graphs”, then NL = UL [5].

28

Open Problem 2: Reduction between weighting schemes. We have shown that testing
reachability in max-poly layered DAGs can be done in UL. With respect to layered DAGs, it would
be interesting to know if these problems are inter-reducible in log-space. In particular, is there
a deterministic log-space algorithm, which given a log-space computable, polynomially bounded,
min-unique (resp. min-poly) weighting scheme for a graph G, produces a max-unique (resp. max-poly)
weighting scheme for G? Notice that, Proposition 5.1 indicates that there is UL reduction of this
kind. However, it is not clear if there is a direct deterministic log-space reduction between the two
restricted problems (say, in the case of layered DAGs).

Open Problem 3: Can either of the algorithms be extended to a larger class of graphs?
We know that extending the algorithm to allow exponentially many minimum/maximum-weight
paths is equivalent to solving Reach for general graphs in UL. It will be interesting to see if the
algorithms presented in the paper could be extended to an larger class of graphs. We remark that
the UL algorithm for max-poly graphs work only for layered DAGs, as the layering is critically
needed in the reduction to LongPath problem in section 4.1.

References

[1] Eric Allender. Reachability problems: An update. In Proceedings of Computability in Europe,
pages 25–27, 2007.

[2] Eric Allender, David A. Mix Barrington, Tanmoy Chakraborty, Samir Datta, and Sambuddha
Roy. Planar and grid graph reachability problems. Theory of Computing Systems, 45(4):675–723,
July 2009.

[3] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[4] A. Bondy and U.S.R. Murty. Graph Theory. Graduate Texts in Mathematics. Springer London,
2007.

[5] Chris Bourke, Raghunath Tewari, and N. V. Vinodchandran. Directed planar reachability is in
unambiguous log-space. ACM Transations on Computation Theory, 1(1):4:1–4:17, February
2009.

[6] Michael L. Fredman, János Komlós, and Endre Szemerédi. Storing a sparse table with 0(1)
worst case access time. Journal of the ACM, 31(3):538–544, June 1984.

[7] Brady Garvin, Derrick Stolee, Raghunath Tewari, and N.V. Vinodchandran. ReachFewL =
ReachUL. Computational Complexity, 23(1):85–98, 2014.

[8] Neil Immerman. Nondeterministic space is closed under complementation. SIAM Journal of
Computing, 17(5):935–938, October 1988.

[9] Nutan Limaye, Meena Mahajan, and Prajakta Nimbhorkar. Longest paths in planar dags in
unambiguous logspace. Chicago Journal of Theoretical Computer Science, 2010(8). Preliminary
version appeared in the Proceedings of Computing: The Australasian Theory Symposium
(CATS), pages 101–108, 2009.

29

[10] Aduri Pavan, Raghunath Tewari, and N. V. Vinodchandran. On the power of unambiguity in
log-space. Computational Complexity, 21(4):643–670, 2012.

[11] Omer Reingold. Undirected st-connectivity in log-space. In Proceedings of Symposium of
Theory of Computing 2005, pages 376–385, 2005.

[12] Klaus Reinhardt and Eric Allender. Making nondeterminism unambiguous. SIAM Journal of
Computing, 29(4):1118–1131, 2000.

[13] R. Szelepcsényi. The method of forced enumeration for nondeterministic automata. Acta
Informatica, 26(3):279–284, November 1988.

30

	Introduction
	Preliminaries
	Reachability in min-const and min-poly graphs
	A Warmup Case : UL algorithm for Reach on min-const graphs
	FewUL algorithm for Reach on min-poly graphs
	UL algorithm for Reach on min-poly graphs

	Reachability on max-poly layered DAGs
	Reducing Reach on layered DAGs to LongPath on single-source DAGs
	FewUL algorithm for LongPath on max-poly single-source DAGs
	UL algorithm for LongPath on max-poly single-source DAGs

	Discussion and Open Problems

