
On Directed Tree Realizations of Degree Sets

Prasun Kumar1, Jayalal Sarma M.N.1, and Saurabh Sawlani2

1 Department of Computer Science and Engineering, IIT Madras, Chennai, India.
2 Department of Electrical Engineering, IIT Madras, Chennai, India.

Abstract. Given a degree set D = {a1 < a2 < . . . < an} of non-
negative integers, the minimum number of vertices in any tree realizing
the set D is known[10]. In this paper, we study the number of vertices and
multiplicity of distinct degrees as parameters of tree realizations of degree
sets. We explore this in the context of both directed and undirected trees
and asymmetric directed graphs (graphs which do not have a cycle of
length two). We show the following results.

– We show a tight lower bound on the maximum multiplicity needed
for any tree realization of a degree set.

– For the directed trees, we study two natural notions of realizability
by directed graphs and show tight lower bounds on the number of
vertices needed to realize any degree set.

– For asymmetric graphs, if µA(D) denotes the minimum number of
vertices needed to realize any degree set, we show that a1 +an +1 ≤
µA(D) ≤ an−1 +an +1. We also derive sufficiency conditions on ai’s
under which the lower bound is achieved.

– We study the following algorithmic questions related to our problem
and study their complexity. (1) Given a degree set D and a non-
negative integer r (as 1r), test whether the set D can be realized
by a tree of exactly µT (D) + r number of vertices. We show that
the problem is fixed parameter tractable under two natural param-
eterizations of |D| and r. We also study the variant of the problem
: (2) Given a tree T , and a non-negative integer r (in unary), test
whether there exists another tree T ′ such that T ′ has exactly r more
vertices than T and has the same degree set as T . We show that this
problem can be solved in log-space.

– For directed trees, under the both notions of realizability, we show
that if µ′(D) is the minimum number of vertices needed for any
directed tree realization, then for any non-negative integer r, there
is a directed tree with µ′(D) + r vertices realizing the same degree
set.

1 Introduction

Representation of graphs is an important theme in various algorithmic design
fronts for graph theoretic problems. The standard methods used are adjacency
matrix and adjacency list representations. Since many applications require more
succinct representation, degree sets and degree sequences have been considered



where the uniqueness of the graph being represented can be traded off for suc-
cinctness. However, there is a host of computational [1] and combinatorial prob-
lems [10, 8, 9, 3] associated with these representations themselves.

In this context, we study tree realizations3 of degree sets D = {a1 < a2 <
. . . < an}. It is known[10] that the minimum number of vertices necessary and
sufficient for a graph to realize any degree set D is exactly an + 1. If the graph
is restricted to be a tree, this is known [10] to be exactly (

∑n
i=1(ai − 1)) + 2 if

and only if a1 = 1.
We study the tree-realizability of degree sets under multiplicity constraints on

each degree. That is, realizations where the multiplicity of each vertex is upper
bounded by a number m. The realization that achieves the minimum number
of vertices has exactly one vertex of each degree except for the degree 1. Hence
the degree distribution is skewed. Can the degree set be realized by a tree with
smaller maximum multiplicity if we are allowed to use more vertices? We answer
this in the negative by arguing that the standard construction is indeed optimal
in terms of maximum multiplicity.

Theorem 1. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree set D = {1 = a1 < a2 < . . . < an} is

∑n
i=1 ai − 2n+ 3.

We define the notion of degree multiset where each element repeats atleast
m times. We also generalize the above theorem to the case of degree multiset.

We turn to degree set realizations using directed graphs. We study some
natural variants. In the first variant, the degree set is said to be realized if there
is a directed graph such that every vertex has either the in-degree or the out-
degree from the set, and every number in the degree set appears as the in-degree
of some vertex or as the out-degree of some vertex in the graph. We call this
the ∨-realization of D. We observe a connection between this variant and the
undirected graph realizations of degree sets in the case of bipartite graphs (in
particular trees) and hence derive the minimum multiplicities in this case.

In the second variant, which we call the ∧-realization of D, the degree set
is to be realized by a directed graph such that every vertex has the in-degree
and the out-degree from the set and every element in the set appears as the
in-degree of some vertex and as the out-degree of some vertex. We prove the
following theorem for directed tree ∧-realizations.

Theorem 2. The minimum order of any directed tree ∧-realizing a degree set
D is 2(

∑n
i=2(ai − 1) + 1).

Relaxing the tree constraints, we study the ∧ realizability of D in the context
of asymmetric directed graphs4. These are classes of directed graphs where there
are no cycles of length 2. We prove the following:

3 See Section 2 for formal definitions.
4 In [2], Chartrand et al studied directed asymmetric graph realizations of degree sets
D. However, their definition of realization is only with respect to out-degree which
differs from our definition



Theorem 3. For any degree set D = {a1 < a2 < . . . < an}, let µA(D) be the
minimum number of vertices of any asymmetric directed graph realizing D, then:

a1 + an + 1 ≤ µA(D) ≤ an−1 + an + 1

We also give sufficient conditions among the ai’s under which the lower bound
is achieved.

Turning to algorithmic questions : we consider the following Tree Exten-
sion Problem : Given a degree set D and a number r, test whether there is
an undirected tree T that realizes the degree set D such that T has exactly
µT (D)+r vertices. Here µT (D) denotes the minimum order of any tree realizing
D.

From a known characterization of the realizability of D with a given number
of vertices using the well-studied Frobenius problem, we show that the problem
is polynomial-time many-one equivalent to Integer Knapsack Problem.

We study parametrized versions of the problem, with respect to two param-
eters - |D|, r. We show the following results.

Theorem 4. Tree Extension Problem is fixed parameter tractable with re-
spect to the parameters |D| and r, when r is presented in unary.

We study the following variant of the computational question. Given a tree
T and a non-negative integer r, test whether there is another tree T ′ with the
same degree set but now having exactly |T | + r number of vertices. We show
that this problem can be solved in log-space and hence in polynomial time.

The analogous problems for directed trees turn out to be surprisingly easier.
We prove the following characterization. For a degree set D, let µ∧(D) (µ∨(D))
denote the minimum number of vertices required to ∧-realize (∨-realize) the
degree set D using a directed tree.

Theorem 5. Given a set D and a value r, the degree set can always be ∧-realized
(resp. ∨-realized) using a directed tree of µ∧(D) + r (resp.µ∨(D) + r vertices.)

2 Preliminaries

Let G = (V,E) be a graph5. For v ∈ V , by d(v) we denote the degree of the
vertex v in G. A degree-set of a graph G (first studied by [10]) is a subset of N6

defined as follows: D(G) = {d(v) : v ∈ G}. A set D ⊂ N is said to be realizable
if and only if there is a graph G such that D(G) = D.

The degree-sequence of the graph G is the sequence of numbers : d(G) =
(d(v) : v ∈ G). A sequence D with elements from N is said to be realizable if
there is a graph whose degree sequence (up to the ordering) is d(G). Several
results are known about characterizing realizability of degree sequences using
graphs and various subclasses of graphs[3, 9, 8].

5 All graphs being considered in this paper are simple
6 N includes 0.



Let µ(D) denote the minimum number of vertices that must be present in
any realization of D. Let µT (D) denote the minimum number of vertices that
must be present in any realization of D when the graph is restricted to be a tree.

In directed graphs, for a vertex v we denote by d−(v) and d+(v), the indegree
and outdegree respectively. We write the indegree and outdegree for a vertex vi
as an ordered pair (ai, bi) which means d+(vi) = ai, d

−(vi) = bi. A directed
graph is said to be asymmetric if it does not have cycles of length two. Let
µA(D) denote the minimum number of vertices that any graph realizing D must
have. If it clear from the context, we drop the notation for type of realizability.

An intermediate case between degree sets and degree sequences is that of
multiplicity-constrained degree sets, where we restrict the number of times that
a vertex in the degree set appears in the realization. A natural restriction to
study is when the multiplicity is bounded from above, given that the degree
distribution in the realization of D with trees is highly skew. We also consider the
complementary variant, where the multiplicity is bounded from below. In these
cases, we can denote the degrees with a multi-set Dm = {am1

1 , am2
2 , . . . , amn

n }
where ami

i denotes that ai is appearing at least mi times in the multiset and
mis are positive integers. We now focus on a very special case of the degree
multiset when a1 = 1,m1 = 1, which we need later in our construction. Under
this assumption, Dm = {1, am2

2 , . . . , amn
n }. Since 1 ∈ Dm, there exists a tree

realization for Dm, we obtain the lower bound for any tree realizing Dm. We
state (and prove in the appendix) the following proposition. The proof of this is
an easy generalization of the argument in [10] which assumes each mi = 1.

Proposition 1. The minimum order of a tree realizing Dm = {1, am2
2 , . . . , amn

n }
is

∑n
i=2mi(ai − 1) + 2.

We briefly introduce the basics of parametrized complexity that we need
in the paper. We refer the reader to a standard textbook[6] for details. A
parametrized computational problem instance is denoted by (I, k) where k is
the parameter. A problem is fixed parameter tractable (FPT) with respect to
the parameter k if there is an algorithm solving the problem in time f(k).nO(1)

where n is the size of the instance. In general, the parameter k is not unique.
That is, it is possible to parametrize a problem in more than one way and using
more than one parameter.

3 Multiplicity Lower Bounds in Tree-realizations

In this section, we prove lower bounds for the multiplicities of the pendant
vertices (vertices of degree 1) in any realization of a degree set D using trees.
We prove Theorem 1.

Theorem 6. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree set D = {1 = a1 < a2 < . . . < an} is

∑n
i=1 ai − 2n+ 3.

Proof. The set D = {1 = a1 < a2 < . . . < an} can be realized by a tree[10].
Minimum order of such a tree is

∑n
i=1(ai − 1) + 2. In minimum order tree



construction, each ai is connected with exactly ai − 2 pendant vertices for i =
3, 4, . . . , n−1 and for i = 2 and n, ai’s are connected with ai−1 pendant vertices
and then ai is connected with ai+1 for i = 2, . . . , n− 1.

Letmi be the multiplicity of ai in a tree realization T . Then, (1m1 , am2
2 , . . . , amn

n )
will be the degree sequence of T.

Case 1 when a2 ≥ 3. We recall that, if degree sequence d = (d1 ≥ d2 ≥ . . . ≥
dn) is being realized by a tree then number of pendant vertices in any tree

realization [1] of d is
∑k

i=1(di− 2) + 2 where k is the largest index such that
dk ≥ 3. Hence, m1 = 2 + (a2 − 2)m2 + (a3 − 2)m3 + . . . + (an − 2)mn, ∀i
mi ≥ 1. m1 will be minimum if mi = 1 for each i = 2, 3, . . . , n and the tree
construction described above meets exactly this requirement. So minimum
value m1 = 2 + (a2 − 2) + (a3 − 2) + . . .+ (an − 2) =

∑n
i=1 ai − 2(n− 1) + 1

=
∑n

i=1 ai − 2n+ 3

Case 2 : when a2 = 2. We first construct the tree for the degree set D1 = {1 =
a1 < a3 < . . . < an} in the way mentioned above and then introduce a vertex
v. Now make v adjacent to any one pendant vertex,say u,so that v becomes
the new pendant vertex and d(u) = 2. Degree set of this modified tree is
D and number of pendant vertices is same as that in the tree realization
of D1 which is same as m1 = 2 + (a3 − 2) + (a4 − 2) + . . . + (an − 2 =
2+(a2−2)+(a3−2)+. . .+(an−2) =

∑n
i=1 ai−2(n−1)+1 =

∑n
i=1 ai−2n+3

The above lemma can be generalized to the case of multisets. We give the
proof in the appendix.

Theorem 7. The minimum multiplicity of pendant vertices in any tree realiza-
tion for the degree multiset Dm = {1, am2

2 , . . . , amn
n } is

∑n
i=2mi(ai − 2) + 2.

4 Minimum-order Realizability of Directed Trees

In this section we explicitly compute the minimum number of vertices needed to
∧-realize (resp. ∨-realize) the given degree set D using directed trees.

We describe ∨-realizability first. We prove the following general upper bound
for µ∨(D). Let µB(D) denote the minimum number of vertices for any undirected
bipartite graph realizing the degree sequence D. Given any undirected bipartite
realization of a degree set by a graph G = (U, V,E) we assign directions from
U to V . This gives a ∨-realization of the same graph using a directed bipartite
graph. Thus, we have the following proposition.

Proposition 2. µ∨(D) ≤ µB(D)

Indeed, this proposition holds for directed trees as well since the underlying
undirected graph is bipartite. We now argue that this upper bound is tight for
trees and show the following theorem.



Theorem 8. For the degree set D = {1 = a1 < a2 . . . < an}, minimum order
of a directed tree T (V,E) so that ∀v ∈ V, d+(v) ∈ D or d−(v) ∈ D, and for each
ai ∈ D there is a vertex u ∈ V such that d+(u) = ai or d−(u) = ai, is same as
the minimum order undirected tree realizing D,i.e.

∑n
i=1(ai − 1) + 2.

Proof. The upper bound follows from the above proposition through the undi-
rected tree-realization of D with optimal number of vertices.

Now we need to prove a lower bound on the order of a directed tree satisfying
the given constraints and then give a realization which meets this bound.

For each i, ai ∈ D will appear as both (ai, aj) and (ak, ai) at least once,
where aj , ak ∈ D. Thus, 1 ≤ ai + aj ≤ 2an. Let T (V,E) be a directed tree for D
satisfying the constraints. We have,∑

v∈V
(d−(v) + d+(v)) = 2|E| = 2(V − 1) ≥

n∑
i=1

ai + (V − n)

This implies the lower bound |V | ≥ 2 +
∑n

i=1(ai − 1).

Now we turn to ∧-realizability of D using directed trees. It can be noted that
a necessary condition is 0 ∈ D since the tree has to contain leaf nodes whose
in-degree or out-degree has to be 0.

Theorem 9. For the degree set D = {0 < 1 < a2 < . . . < an}, the minimum
order of a directed tree T which ∧-realizes the degree set D, is 2 (

∑n
i=1(ai − 1))+

2.

Proof. We prove the upper bound by constructing the directed tree. Construct
a path with 2(n− 1) number of vertices, say u1, u2, . . . , u2n−2. Now add (a2− 1)
pendant vertices to u1. For each 2 ≤ i ≤ 2n−1, add ad i

2 e+1−2 pendant vertices
to ui. Add an − 1 pendant vertices to the u2n−2.

In this tree, first 2 vertices are having degree a2, next 2 vertices are having
degree a3 and so on. Now we assign directions. Start with the first vertex u1 in
the path. Direct all edges connected with u1 towards u1. For the next vertex in
the path u2 assign directions to all adjacent edges away from u2. Repeat this
process to assign direction to all edges. Since each ai, for i = 2, 3, . . . , n, appears
exactly twice and because of the way we are assigning directions to edges, ai
once appears as (ai, 0) and once as (0, ai) in final directed tree. For pendant
vertices in undirected graph, indegree and outdegree pair occurs as either (1, 0)
or (0, 1).

To prove the minimality, we first observe that the number of vertices in the
above construction is |V | =

∑n
i=2 2(ai−1) + 2. Now, consider the corresponding

degree multiset {1, a22, a23, . . . , a2n}. Applying proposition 1 with mi = 2∀i gives
a matching lower bound on |V |.

5 Minimum order ∧-realizability of Asymmetric Graphs

In this section we study ∧ realizations of degree sets with asymmetric directed
graphs. We introduce a notation for convenience in this section. For a directed



graph G, let AG denote the set that is ∧-realized by G. Since the realizability
is fixed, we drop it from the notation. Recall that µA(D) denotes the minimum
order of any asymmetric directed graph realizing D. We start with a simple case
which is similar to the starting point in [2].

Lemma 1. If D = {a} where a is a non-negative integer, then µA(D) = 2a+ 1.

Proof. This case is similar to [2]. When a = 0 the graph is an isolated vertex. For
a ≥ 1, all vertices in a directed graph with AG = {a} must have both indegree
and outdegree equal to a. Consider a vertex v, since the graph is asymmetric,
v is connected to 2a distinct vertices. Accounting for these vertices and v, we
have 2a+ 1 vertices. Hence, µA(D) ≥ 2a+ 1. To complete the proof, we need to
prove that µA(D) ≤ 2a+ 1. To do this, we will come up with a construction of
a directed graph with AG = {a} and order 2a+ 1.

We define G to be the directed graph with the vertex set {v1, v2, . . . , v2a+1}.
The edges are as follows: {(vi, vj)|1 ≤ i ≤ 2a+ 1 and i+ 1 ≤ j ≤ i+ a} (where
subscripts are modulo 2a+ 1). Clearly, G is asymmetric and has 2a+ 1 vertices
with AG = {a}. Hence the proof.

Theorem 10. If D = {a1 < a2 < . . . < an}, n ≥ 2 is a set of positive integers
then

a1 + an + 1 ≤ µA(D) ≤ an−1 + an + 1.

Proof. We know that there is at least one vertex v of G with either indegree or
outdegree equal to an. Without loss of generality, let us assume that d+(v) = an.
Now, we know that d−(v) ≥ a1. Therefore, d+(v) + d−(v) ≥ an + a1. Since G is
also asymmetric, it implies that the order of G is at least a1 + an + 1.

To prove that µA(S) ≤ an−1 + an + 1, we proceed by induction. By Lemma
1, we know that µA({a1}) = 2a1 + 1. Let the graph representing this be G1.
Divide G1 into three components, Cx, Cy - each containing a1 vertices, and Cz

- containing the remaining vertex. From G1, we obtain G2, by adding a new
component C1 containing a2 − a1 vertices and adding the following edge set
E = {(vx, v1)|vx ∈ Cx ∧ v1 ∈ C1} ∪ {(v1, vy)|v1 ∈ C1 ∧ vy ∈ Cy}. Thus, we have
an asymmetric directed graph for the degree set {a1 < a2} with order a1+a2+1.

Now consider that there exists an asymmetric directed graph Gn0
with AG =

{a1 < a2 < . . . < an0}, with order an0−1 + an0 + 1. Gn0 contains a total of 2n0
components :

– Cn0−1, containing an0
−an0−1 vertices with outdegree and indegree equal to

a1.
– Ci, for i from 1 to n0 − 2, each containing ai+1 − ai vertices with outdegree
a1 and indegree an0−1−i.

– C ′j , for j from 1 to n0− 2, each containing aj+1− aj vertices with outdegree
an0−1−j and indegree a1.

– Cx, containing a1 vertices with outdegree an0
and indegree an0−1.

– Cy, containing a1 vertices with outdegree an0−1 and indegree an0
.

– Cz, containing 1 vertex with outdegree and indegree a1.



From Gn0
, we obtain Gn0+1, by adding two new components - Cn0

containing
an0+1− an0 vertices, and C ′n0−1 containing an0 − an0−1 vertices, and adding the
edge set E = E1 ∪ E2 ∪ E3, where

– E1 = {(vx, vn0
)|vx ∈ Cx ∧ vn0

∈ Cn0
} ∪ {(vn0

, vy)|vn0
∈ Cn0

∧ vy ∈ Cy}
– E2 = {(vy, vn0−1)|vy ∈ Cy ∧ vn0−1 ∈ C ′n0−1} ∪ {(vn0−1, vx)|vn0−1 ∈ C ′n0−1 ∧
vx ∈ Cx}

– E3 = {(vi, v′i)|vi ∈ Ci ∧ v′i ∈ C ′n0−1−i}, where i ∈ {1, 2, . . . , n0 − 2}

We can observe that Gn0+1 resembles Gn0
if n0 is replaced with n0+1. Thus,

through this construction, we have proved that there always exists a asymmetric
directed graph G with AG = (a1 < a2 < . . . < an), of order an−1 + an + 1.
Hence, the minimum order µA(D) ≤ an−1 + an + 1.

We now identify a condition that is sufficient in order to achieve the lower bound
in theorem 10.

Lemma 2. If D = {a1 < a2 < . . . < an}, n ≥ 2 is a set of positive integers
which satisfies the following condition:

ai + an+1−i = aj + an+1−j∀i < j

then µA(D) = a1 + an + 1.

Proof. From Theorem 10, we know that µA(D) ≥ a1 + an + 1. So, we only
have to show that, if the given condition is satisfied, µA(D) ≤ a1 + an + 1.
To do this, we will come up with a construction of a directed graph G with
AG = {a1 < a2 < . . . < an} and order a1 + an + 1.

D satisfies the given condition. We shall construct a directed graph with
order a1 + an + 1 by induction on n.

For n = 2, a1 + an + 1 = an−1 + an + 1. Therefore, by Theorem 10, we can
always construct a directed graph for n = 2 with order a1 + a2 + 1.

Now take n = 3, defineG to be the directed graph with V (G) = {v1, v2, . . . , va1+a3+1}
and E(G) = {(v1, vj)|2 ≤ j ≤ a1 + 1} ∪ {(vj , v1)|a1 + 2 ≤ j ≤ a1 + a3 + 1} ∪
{(va1+a3+1, vj)|2 ≤ j ≤ a3} ∪ {(vj , va1+a3+1)|a3 + 1 ≤ j ≤ a1 + a3}. G has
a1 + a3 − 1 vertices of indegree and outdegree 1. Since we know that the given
condition is satisfied, a1 + a3 = 2a2 and a1 + a3 − 1 = 2(a2 − 1) + 1. From
Lemma 1 1, we can construct a directed graph G1 of order a1 + a3 − 1 with
AG1

= {a2− 1}. Superimposing G1 on the vertices with outdegree and indegree
1 in G, we get a directed graph for n = 3 with order a1 + a3 + 1.

Now, let us assume that such a construction is possible for n = m. We will
try to construct a graph of order a1 + an + 1 for n = m+ 2. Define G to be the
directed graph with V (G) = {v1, v2, . . . , va1+an+1} and E(G) = {(v1, vj)|2 ≤
j ≤ a1 + 1} ∪ {(vj , v1)|a1 + 2 ≤ j ≤ a1 + an + 1} ∪ {(va1+an+1, vj)|2 ≤ j ≤
an} ∪ {(vj , va1+an+1)|an + 1 ≤ j ≤ a1 + an}. G has a1 + an − 1 vertices of
indegree and outdegree 1. Since we know that the required condition is satisfied,
a1 + an = a2 + an−1 and a1 + an − 1 = (a2 − 1) + (an−1 − 1) + 1.



From our induction assumption, we can construct a graph G1 of order a1 +
an − 1 with AG1 = {a2 − 1, a3 − 1, . . . , an−1 − 1} (because G1 has m number of
vertices. Superimposing G1 on the vertices with outdegree and indegree 1 in G,
we get the desired graph for n = m + 2. This completes the construction and
the proof.

We are able to prove exact bounds for a special case of the degree set.

Lemma 3. If D = {0, a2}, then µA(D) = 2a2.

Proof. Consider a directed asymmetric graph G for which AG = {0, a2}. We
know that G has at least one vertex, say v1, with outdegree equal to a2. Its
indegree can be equal to either 0 or a2. Consider the case in which its indegree
is a2. Since the graph is asymmetric, v1 connects to 2a2 distinct points. Thus
the order of G in this case would be at least 2a2 + 1. Now, consider the case
where d−(v1) = 0. Here, v1 connects to a2 vertices (say v2, v3, . . . , va2+1), whose
indegrees now cannot be equal to 0, and so are all equal to a2. So, v2 has edges
coming in from a2 − 1 vertices apart from v1. If any of these vertices are one
of v2, v3, . . . , va2+1, then that particular vertex would have both indegree and
outdegree equal to a2, realizing our earlier case and thus making the order of
G at least 2a2 + 1. However, if v2 does not connect to any of v2, v3, . . . , va2+1,
then it connects to a2 − 1 new vertices (va2+2, va2+3, . . . , v2a2). Thus the order
of G would be at least 2a2. From the above cases, we can see that the order of
the directed graph must be at least 2a2, i.e. µA({0, a2}) ≥ 2a2. To complete the
proof, we need to prove that µA({0, a2}) ≤ 2a2. To do this, we will come up
with a construction of a directed graph with AG = {0, a2} and order 2a2.

Define G to be the directed graph with V (G) = {v1, v2, . . . , v2a2
} and E(G) =

{(vi, vj)|1 ≤ i ≤ a2 and a2 + 1 ≤ j ≤ 2a2}. Then G is asymmetric with order
2a2 and AG = {0, a2}. Hence, the proof.

6 Complexity results on Tree Extension Problem

We argue complexity results on the following algorithmic problems related to
degree set realizations of trees. We define the problems formally first.
Tree Extension Problem(TEP) : Given a degree set D and an integer r,
test if there is a tree having µT (D) + r vertices that realizes the degree set D.
Unary Tree Extension Problem (UTEP) : Given a tree T on ` vertices
and a string 1r, test if there is another tree T ′ having exactly `+ r vertices and
the degree set same as that of T .

One important ingredient of our arguments about complexity of the above
stated problems is the following combinatorial connection first proved by Gupta
et al[7] between realizability and the well-studied Frobenius problem. We state
it differently here, but the proof can be derived from the proof of Theorem 3
in [7]. However, we also give an alternative proof for the forward direction.

Lemma 4 ([7]). If the degree set D = {a1 = 1 < a2 < . . . < an} is realized
by a tree T (V,E) then we can get another tree realization T1 = (V1, E1) where



|V1| = |V | + r,r is a positive integer, if and only if r is a linear combination of
(ai − 1), i.e.

r =

n∑
i=2

ki(ai − 1) (1)

where ki’s are non-negative integers.

Proof. Without loss of generality, we fix T (V,E) as the tree with minimum order
realizing D. Let mi be the multiplicity of vertices with degree ai in T . Hence,
mi = 1, for each 2 ≤ i ≤ n and m1 =

∑n
i=1 ai − 2n + 3 which is also the

minimum multiplicity of pendant vertices in any tree realization. Now we add r
number of vertices so that exactly ki vertices are produced with degree ai, where
ki’s are non-negative integers, to get T1 = (V1, E1) and hence r =

∑n
i=1 ki. So

{1
∑n

i=1 ai−2n+3+k1 , a1+k2
2 , . . . , a1+ki

i , . . . , a1+kn
n } is the degree sequence of T1 .

Consider two following cases:

Case 1 : a2 ≥ 3. By the bounds from [1],
∑n

i=1 ai − 2n + 3 + k1 =
∑n

i=2(ki +
1)(ai − 2) From this we get k1 =

∑n
i=2 ki(ai − 2). Hence r =

∑n
i=1 ki =∑n

i=1 ki(ai − 1).

Case 2 : a2 = 2. Since (a2−2) = 0 so
∑n

i=3(ki+1)(ai−2) =
∑n

i=2(ki+1)(ai−2).
Hence we will get the same result.This completes the proof.

Using the above Lemma, we show the following theorem:

Theorem 11. Unary Tree Extension Problem can be solved in log-space.

Proof. We prove the theorem by reducing the problem to unary subset sum
problem which can be solved in log-space. The unary subset sum problem is
defined as follows. Given a (multi)-set S of m integers b1, b2, . . . bm and a value
c (all inputs in unary) test if there is a subset S′ of these integers such that∑

i∈S′ bi = c. The reduction runs in log-space as follows. For 1 < i ≤ n, let
ti = d r

ai−1e. Given a tree T and r in unary, write down the following set S and
r in unary, choose c = r and define:

S =

i=n,j=ti⋃
i=2,j=1

{(ai − 1)j}

Indeed, if there is a subset of S that sums up to r, then it is clear that this choice
of the j’s satisfies equation 1. Any solution for the ki’s in equation 1, it must be
that ki ≤ ti for all i. Hence the corresponding terms ki(ai − 1) will appear in
the set S as well. Choosing these terms in S′ ensures

∑
i∈S′ bi = r = c. To argue

the complexity of the reduction, notice that we can compute ai’s each time on
the fly by enumerating the degree up to the maximum degree. This can be done
in log-space.



The idea in the above proof can be adapted to argue that Tree Exten-
sion Problem is equivalent to Integer Knapsack Problem(IKP) which
can be stated as follows : Given non-negative integers c1, . . . , ck, and a value
d - the problem asks if there are non-negative integers d1, d2, . . . , dk such that∑

i cidi = d. Given a degree set D, consider the IKP instance with k = |D| − 1
and ci = ai+1 − 1 for all 1 ≤ i ≤ k. Choose d = r. In the reverse direction,
given non-negative integers c1, . . . , ck, and a value d, consider the degree set
D = {1, c1, . . . , ck} and r = d. The correctness of the reductions follow from
Lemma 4 directly. This discussion gives us the following proposition.

Proposition 3. Tree Extension Problem is equivalent to Integer Knap-
sack Problem.

We consider two natural parameterizations of Tree Extension Problem and
argue theorem 4.
Parameterizing with respect to |D| when r is given in unary : In this
setting, we give a reduction to Variety Subset Sum Problem. The variety
subset-sum problem : given a multiset A, and a target sum b, the problem asks
if there is a sub(multi)set of A that adds up to exactly b. To do the reduction,
we will list down the number (ai − 1) where ai ∈ A, exactly r number of times
in the subset. Since r is given in unary we can, in polynomial time, write out
these numbers. There will be exactly nr of them. The correctness and resource
bounds of the reduction follow easily.
The Variety Subset Sum Problem was shown[4] to be fixed-parameter tractable
with respect to the number of distinct elements in A as the parameter. As we
can see in the above case, this is precisely |D| − 1. Hence Tree Realizability
problem is fixed-parameter tractable with respect to |D| as the parameter.
Parameterizing with respect to r as the parameter, when r is given
in unary We first notice that Variety Subset Sum Problem reduces to
Maximum Knapsack Problem. We define the problem first. Given a set
{x1, x2, . . . xn} with sizes s1, s2, . . . sn and profits p1, p2, . . . pn respectively, and
two values knapsack capacity b and profit threshold k - test if there exists a
subset S ⊆ [n] such that : Σi∈Ssi ≤ b and Σi∈Spi ≥ b. To reduce Variety
Subset Sum Problem, given A = {a1, a2, . . . an} and target sum t, produce
xi’s such that si = pi = ai and b = p = t. The inequalities ensures that the Max-
imum Knapsack Problem has a solution if and only if there is a subset A′ ⊆ A
which adds up to exactly t. Fernau[5] has shown that the Maximum Knapsack
Problem is fixed parameter tractable with respect to the parameter b. Since
our reduction maps the parameter t to exactly p, this shows that the Tree Ex-
tension problem is fixed parameter tractable with respect to the parameter r
when r is given in unary.

6.1 Tree Extension Problem for Directed Trees

In this section we address similar computational problem for directed trees under
the ∧-realizability and the ∨-realizability. Surprisingly in both cases, it turns out
to be the case that for every non-negative integer r, there are directed trees with



`+ r vertices ∧-realizing and ∨-realizing (where ` takes appropriate values from
Theorem 8 and Theorem 9 respectively). We prove these two results now.

Theorem 12. For the degree set D = {0, 1, a2, . . . , an} if we have a directed tree
realization Td(Vd, Ed) then we can have another tree realization7 Td1 = (Vd1 , Ed1)
where |Vd1

| = |Vd|+ r for each non-negative integer r.

Proof. Without loss of generality, we fix Td(Vd, Ed) as the directed tree with
minimum order realizing D. We now consider two cases depending on the number
of pendant vertices, say Vp, in Td:

Case 1: when r ≤ Vp
Add r number of pendant vertices to any r number of already existing pen-
dant vertices in Td so that if d−(p) = 1, make p adjacent to newly added
vertex by an outgoing edge and similarly if d+(p) = 1, make p adjacent to
newly added vertex by an incoming edge. Since 0, 1 ∈ D, degree set remains
unchanged and we get another tree Td1

with k vertices more than Td.
Case 2 : when r ≥ Vp, let r = l ∗ Vp + r0 where l is a positive integer ≥ 1 and
r0 is another non-negative integer ≤ Vp − 1.
First add Vp number of pendant vertices to Td in the way described in case 1
and repeat the same procedure (l−1) times more with directed tree obtained
from the previous iteration and in the process degree set also does not change
as explained above. In last iteration, we will do the same for remaining r
vertices. This completes the proof.
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A Proof of Theorem 7

Proof. Let k1 be the multiplicity of pendant vertices and (mi +ki) be the multi-
plicities of remaining asi in a tree realization T ,where ∀i ∈ [n]ki is a non-negative
integer, then 1k1 , am2+k2

2 , . . . , amn+kn
n will be the degree sequence of T.

Case 1: when a2 ≥ 3.

k1 = 2+(a2−2)(m2+k2)+(a3−2)(m3+k3)+. . .+(an−2)(mn+kn),∀iki ≥ 0

Since each term in the right hand side is a positive integer and there must
exist at least mi vertex with degree ai in T so k1 will be minimum if ki = 0
for each i = 2, 3, . . . , n and the tree construction mentioned in Lemma 1
meets exactly this requirement. So, the minimum value of

k1 = 2 + (a2 − 2)m2 + (a3 − 2)m3 + . . .+ (an − 2)mn

=

n∑
i=2

(ai − 2)mi + 2

Case 2: when a2 = 2 Since (a2 − 2) = 0 so we will get the same value as in
case 1 using a similar argument.

B Proof of Proposition 1

Proof. Assume T (V,E) realizes Dm and |V | = v so

∑
v∈V

d(v) = 2|E| = 2(v − 1) ≥ 1 +

n∑
i=2

miai + (v −
n∑

i=2

mi − 1)

. From this we get v ≥
∑n

i=2mi(ai−1)+2. We now give a procedure to construct
a tree which exactly matches this bound. First we construct a path with

∑n
i=2mi

number of vertices, now add (a2−1) pendant vertices with first vertex and a2−2
pendant vertices with next m2 − 1 vertices. Now add ai − 2 pendant vertices to
next mi vertices, for each i ≤ (n− 1). For last mn vertices, add mn− 1 pendant
vertices to the last vertex and for remaining ones add mn − 2 pendant vertices.
In this tree, first m2 vertices are having degree a2, next m3 vertices are having
degree a3 and so on. So |V | =

∑n
i=2mi+(a2−1)+(m2−1)(a2−2)+

∑n−1
i=3 mi(ai−

2) + (an − 1) + (mn − 1)(an − 2) =
∑n

i=2mi(ai − 1) + 2.


