Fast Attributed Graph Embedding via Density of States

Saurabh Sawlani

Lingxiao Zhao

Leman Akoglu

Talk outline

- Graph embedding: desirable characteristics
- Prior and related work
- Proposed method: A-DOGE
- Applications

Graph embedding

Picture from https://towardsdatascience.com/graph-representation-learning-network-embeddings-d1162625c52b

<u>Aim</u>: Represent a graph using a vector of real numbers which can capture all its "information".

Desired properties:

- Task-agnostic (unsupervised)
- Permutation and size invariant
- > Independent
- Multi-scale
- Band-pass
- > Attributed
- Scalable

Related work

	FGSD (NIPS '17) NetLSD (KDD '18)	DOS kernel (SDM '21)	Prop Kernel (ML '16)	GCN (ICLR '17) GIN (ICLR '19)	ChebNet (NIPS '16) CaleyNet (Sig Proc '19)	A-DOGE
Unsupervised	\checkmark	\checkmark	\checkmark			\checkmark
Independent						
Multi-scale						
Band-pass						
Node attributes			\checkmark			
Edge Weights						
Scalable	\checkmark			\checkmark		

Graph spectrum

• G(V,E,X): Node attributed graph

- **S** = Symmetrically normalized adjacency matrix: $D^{-\frac{1}{2}}AD^{-\frac{1}{2}}$
- Eigendecomposition: $S=V\Lambda V^T$

(Diagonal) Degree Matrix

Adjacency Matrix

Carnegie Mellon University

Sawlani, Zhao, Akoglu

Using full Graph Spectrum as embedding

Desired properties:

- Task-agnostic (unsupervised) V
- Independent
- Multi-scale
- Permutation and size invariant
- Band-pass
- Attributed
- Scalable

Eigensp ectrum is multiscale

Using full Graph Spectrum as embedding

Desired properties:

- Task-agnostic (unsupervised)
- Independent
- Multi-scale 🗸
- Permutation and size invariant -
- Band-pass
- Attributed
- Scalable

Density of States

•Why not use the spectrum? - the size depends on graph size!

- Solution: Density of States Histogram
 - i.e., fraction of eigenvalues in each bin

• L. Huang, A. J. Graven, and D. Bindel, "Density of states graph kernels," SDM '21

$${}^{DOS}(\lambda)\,=\,rac{\sum_{j=1}^n\mathbb{I}(\lambda_j\in {
m bin}_\lambda)}{n}$$

h

Using DOS Histogram as embedding

$\mathrm{h}^{DOS}(\lambda)$

Desired properties:

- Task-agnostic (unsupervised)
- Independent 🗸
- Multi-scale 🗸
- Permutation and size invariant
- Band-pass
- Attributed
- Scalable

Capturing any "band" of eigenvalues

• The **DOS histogram** helps capture all parts of the eigenspectrum

• Frequency Response Filters: useful to "select" a part of the spectrum

- e.g.: low-pass/band-pass/high-pass filters
- more generally, each eigenvalue λ_i is assigned a scalar $\phi(\lambda_i)$
- filter output = $\,\mathrm{h}^{DOS}(\lambda)\cdot\phi(\lambda)\,=\,\sum_{i=1}^{\#\mathrm{bins}}\mathrm{h}^{DOS}(\lambda_i)\phi(\lambda_i)$

Aggregate functions/filters

• Can we supplement each histogram with FRFs to make a better embedding?

Exploratory analysis:

- High interpretability
- **Power functions** as filters

Classification tasks:

- High expressivity
- Chebyshev polynomials as filters

Embedding: DOS Histogram + Filters

Desired properties:

- Task-agnostic (unsupervised)
- Independent 🗸
- Multi-scale
- Permutation and size invariant
- Band-pass
- Attributed —
- Scalable

Incorporating Attributes

- DOS histogram: equal weight to each eigenvalue
- Local Density of States (LDOS): $h^{LDOS}(\lambda, x) = \frac{\sum_{i=1}^{n} (x \cdot v_i)^2 \mathbb{I}(\lambda_i \in \mathrm{bin}_{\lambda})}{\pi}$
 - Given attribute vector **x**: $(x \cdot v_i)^2$ represents the weight of λ_i
 - Models the **alignment** between attribute and the structure captured by v_i
 - Related notion **PDOS** (x is only allowed to be indicator vector)
 - K. Dong, A. R. Benson, and D. Bindel, "Network density of states," KDD '19
 - L. Huang, A. J. Graven, and D. Bindel, "Density of states graph kernels," SDM '21

LDOS Aggregate functions: $\mathrm{h}^{LDOS}(\lambda,x)\cdot\phi(\lambda)\,pprox\,x^T\phi(S)x$

Application I: exploratory graph mining

- Alignment of Facebook friendships in colleges w.r.t. dorm and major
- Using LDOS aggregate features (power=1)

Attribute pairs

• Attribute pairs – Coupled LDOS (cLDOS):

• Given **two** attribute vectors x and y: $(x \cdot v_i)(y \cdot v_i)$ is the weight of λ_i

$$\mathrm{h}^{cLDOS}(\lambda,x,y) \,=\, rac{\sum_{i=1}^n (x\cdot v_i)(y\cdot v_i)\mathbb{I}(\lambda_i\in \mathrm{bin}_\lambda)}{n}$$

cLDOS Aggregate functions: $\mathrm{h}^{cLDOS}(\lambda,x,y)\cdot\phi(\lambda)\,pprox\,x^T\phi(S)y$

Application I: exploratory graph mining

- Voting agreement between Rep and Dem senators
- Using cLDOS aggregate feature (power=1)

$A \texttt{ttributed-DO} \texttt{S-based} \ G \texttt{raph} \ E \texttt{mbedding}$

Desired properties:

• Our graph embedding:

- D = number of node attributes
- B = number of bins in histogram
- K = number of aggregate functions (filters)

- Task-agnostic (unsupervised) 🗸
- Independent 🗸
- Multi-scale 📏
- Permutation and size invariant
- Band-pass
- 🕨 Attributed 🗸
- Scalable -----

Scalability

- Usually, eigendecomposition is **slow**!
- But we only need spectral density histograms
- (Dong, Benson, Bindel Network Density of States KDD '19)
 - shows how to (approximately) compute DOS and LDOS fast!

Scalability Experiment

- Comparison with the next fastest competitors
- GNNs famously need a lot more resources, and training labels
- Graph Kernels cannot compute each embedding independently

Application II: classification tasks

	Graph Embedding (Unsupervised)				Graph Kernels (Unsupervised)				GNNs (Supervised)			
	A-DOGE	DOGE	FGSD	NETLSD	G2VEC	WL	WL-OA	РК	DOSGK	СневNет	GCN	GIN
RED-B	<u>91.6</u> (1.5)	90.3 (1.8)	82.4 (2.6)	85.6 (2.2)	74.2 (2.7)	83.9 (0.5) [‡]	88.9 (0.1) [‡]	85.5 (0.3) [‡]	88.8 (0.3)*	90.2 (2.0)	89.9 (2.0)	91.7 (1.6)
RED-5K	<u>55.6</u> (2.2)	53.8 (2.1)	47.0 (1.8)	45.9 (2.1)	41.5 (1.6)	51.2 (0.3)*	E	E	52.8 (0.2)*	55.0 (2.2)	54.2 (1.7)	54.7 (2.0)
COLLAB	72.2 (2.0)	72.2 (2.0)	70.2 (1.8)	68.4 (1.9)	57.9 (1.5)	74.8 (0.2)*	79.8 (1.6)	77.8 (1.7)	80.8 (0.2)*	84.6 (1.1)	84.2 (1.2)	83.8 (1.6)
IMDB-B	72.6 (4.3)	71.6 (4.3)	70.6 (4.1)	69.7 (4.1)	56.0 (4.1)	71.3 (1.0) [‡]	<u>73.5</u> (0.6)	71.2 (0.7) [‡]	72.8 (0.9)*	80.2 (3.9)	79.9 (3.7)	80.8 (4.5)
IMDB-M	47.8 (3.5)	47.6 (3.7)	48.6 (3.4)	47.9 (3.7)	44.4 (3.8)	50.7 (0.6) [‡]	50.7 (0.5) [‡]	$51.0(0.7)^{\ddagger}$	49.4 (0.5)*	55.6 (2.7)	55.2 (2.7)	56.3 (3.1)
DD	80.1 (3.5)	76.2 (3.4)	76.5 (3.5)	76.6 (3.5)	76.2 (3.5)	80.9 (0.3)	79.9 (0.5)	<u>81.6</u> (0.5)	73.4 (3.7)	78.9 (1.9)	78.0 (1.8)	79.3 (1.9)
PROTN	74.9 (3.5)	74.9 (3.5)	74.2 (3.3)	74.5 (4.0)	72.1 (3.1)	73.9 (0.7) [‡]	<u>75.9</u> (0.6) [‡]	74.6 (0.5) [‡]	72.1 (3.9)	78.3 (2.7)	76.7 (3.5)	78.4 (3.9)
AIDS	<u>99.8</u> (0.3)	99.8 (0.3)	99.6 (0.4)	99.6 (0.5)	98.8 (0.7)	99.7 (0.0) [‡]	99.7 (0.0) [‡]	99.7 (0.0) [‡]	99.1 (0.7)	96.9 (1.6)	95.5 (1.3)	98.6 (0.6)
Cong	99.5 (1.5)	54.7 (11.0)	95.1 (4.3)	99.5 (1.5)	86.8 (7.4)	84.8 (7.3)	81.1 (7.7)	68.6 (8.3)	60.0 (10)	50.0 (0.0)	50.0 (0.0)	57.0 (5.9)
Cong-1	78.0 (8.6)	58.9 (10.0)	50.0 (0.0)	60.4 (9.7)	59.8 (11)	62.2 (10)	62.3 (10)	58.2 (10)	55.7 (9.7)	50.0 (0.0)	50.0 (0.0)	71.5 (9.4)
MIG	$\overline{100.0}$ (0)	62.3 (9.7)	99.5 (1.5)	99.9 (1.1)	50.0 (0.0)	99.8 (1.4)	99.8 (1.4)	100 (0.0)	53.5 (12)	100.0 (0.0)	78.5 (1.7)	100.0 (0.0)
BPass	90.8	51.9	47.9	51.4	50	50	51.6	70.4	48.5	98.2 [†]	77.9†	87.6†
Avg.	82.5	69.1	74.1	75.8	66.0	75.6	76.6	76.3	68.6	78.4	74.2	80.5

$A \texttt{ttributed-DO} \texttt{S-based} \ G \texttt{raph} \ E \texttt{mbedding}$

Desired properties:

• Our graph embedding:

- D = number of node attributes
- B = number of bins in histogram
- K = number of aggregate functions (filters)

Carnegie Mellon University

Task-agnostic (unsupervised) 🗸

- Independent 🗸
- Multi-scale 📏
- Permutation and size invariant
- Band-pass
- 🛛 Attributed 🔨
- Scalable 🔪

Thank you!

- Paper is available at: arxiv.org/abs/2110.05228
- Code is available at: github.com/sawlani/A-DOGE
- E-mail me for questions: <u>saurabh.sawlani@gmail.com</u>