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Talk outline

• Graph embedding: desirable characteristics

• Prior and related work

• Proposed method: A-DOGE

• Applications
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Graph embedding
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Aim: Represent a graph using a vector 
of real numbers which can capture all 
its "information".

Picture from https://towardsdatascience.com/graph-representation-learning-network-embeddings-d1162625c52b
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Desired properties:

➢ Task-agnostic (unsupervised)​

➢ Permutation and size invariant

➢ Independent​

➢ Multi-scale

➢ Band-pass

➢ Attributed

➢ Scalable



Related work
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FGSD (NIPS '17)
NetLSD (KDD '18)

DOS kernel 
(SDM '21)

Prop Kernel 
(ML '16)

GCN (ICLR '17)
GIN (ICLR '19)

ChebNet (NIPS '16)
CaleyNet (Sig Proc '19)

A-DOGE

Unsupervised

Independent

Multi-scale

Band-pass

Node attributes

Edge Weights

Scalable



Graph spectrum
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• G(V,E,X): Node attributed graph

One-hot 
enc. label
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Adjacency Matrix

(Diagonal) Degree Matrix

Attributes

• S = Symmetrically normalized adjacency matrix:​

• Eigendecomposition:



Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable

➢Using full Graph Spectrum 
as embedding
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...



Eigensp
ectrum 
is multi-
scale
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Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable

➢Using full Graph Spectrum
as embedding
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Density of States
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• Solution: Density of States Histogram
• i.e., fraction of eigenvalues in each bin​
• K. Dong, A. R. Benson, and D. Bindel, “Network density of states,” KDD '19
• L. Huang, A. J. Graven, and D. Bindel, “Density of states graph kernels,” SDM '21

•Why not use the spectrum? - the size depends on graph size!​​



Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable

➢Using DOS Histogram as 
embedding
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Capturing any "band" of eigenvalues

oThe DOS histogram helps capture all parts of the eigenspectrum

oFrequency Response Filters: useful to "select" a part of the spectrum
• e.g.: low-pass/band-pass/high-pass filters

• more generally, each eigenvalue is assigned a scalar

• filter output =
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Aggregate functions/filters
• Can we supplement each histogram with FRFs to make a better 

embedding?
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Exploratory analysis:​
• High interpretability​
• Power functions ​​ as filters

Classification tasks: 
• High expressivity 
• Chebyshev polynomials as filters
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Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable

➢Embedding:
DOS Histogram + Filters
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Each one is a separate 
filter output



Incorporating Attributes
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• Related notion – PDOS (x is only allowed to be indicator vector)​
• K. Dong, A. R. Benson, and D. Bindel, “Network density of states,” KDD '19​
• L. Huang, A. J. Graven, and D. Bindel, “Density of states graph kernels,” SDM '21​

• DOS histogram: equal weight to each eigenvalue

• Local Density of States (LDOS):

• Given attribute vector x: (x.vi)2 represents the weight of

• Models the alignment between attribute and the structure captured by

LDOS Aggregate functions:



Application I: exploratory graph mining
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• Alignment of Facebook 
friendships in colleges 
w.r.t. dorm and major

• Using LDOS aggregate 
features (power=1)
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Attribute pairs

oAttribute pairs – Coupled LDOS (cLDOS):
• Given two attribute vectors x and y: is the weight of
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cLDOS Aggregate functions:



Application I: exploratory graph mining

17

• Voting agreement 
between Rep and 
Dem senators

• Using cLDOS 
aggregate feature 
(power=1)
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Huge majority for Dems
Polarization
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Attributed-DOS-based Graph Embedding

• Our graph embedding:

• D = number of node attributes

• B = number of bins in histogram

• K = number of aggregate functions (filters)
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Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable



Scalability

• Usually, eigendecomposition is slow!

• But we only need spectral density histograms

• (Dong, Benson, Bindel – Network Density of States KDD '19)
• shows how to (approximately) compute DOS and LDOS fast!
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Scalability Experiment
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• Comparison with the next fastest 
competitors

• GNNs famously need a lot more resources, 
and training labels

• Graph Kernels cannot compute each 
embedding independently
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Application II: classification tasks
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Attributed-DOS-based Graph Embedding

• Our graph embedding:

• D = number of node attributes

• B = number of bins in histogram

• K = number of aggregate functions (filters)
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Desired properties:

• Task-agnostic (unsupervised)​

• Independent​

• Multi-scale

• Permutation and size invariant

• Band-pass

• Attributed

• Scalable



Thank you!

• Paper is available at: arxiv.org/abs/2110.05228

• Code is available at: github.com/sawlani/A-DOGE

• E-mail me for questions: saurabh.sawlani@gmail.com
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